A sample of current routing vulnerabilities and how we may hack to live with them

Cristel Pelsser
UCLouvain

October 7, 2022
Focus on the inter-domain routing protocol BGP
The Internet is composed of **Autonomous Systems** (AS): one or more networks under the control of a single entity.
The Internet is composed of **Autonomous Systems** (AS): one or more networks under the control of a single entity.

Prefixes of the AS are advertised to the outside using BGP.
The Internet is composed of **Autonomous Systems (AS):** one or more networks under the control of a single entity.

Prefixes of the AS are advertised to the outside using BGP. Traffic flows in the reverse direction.
The Internet is a complex ecosystem

There are 73,501 AS advertised as of Oct 2, 2022.

https://www.potaroo.net/tools/asn32/

Source: https://www.caida.org/projects/cartography/as-core/2017/
There is little to no security in the routing protocol used in the Internet

Source: https://www.manrs.org/2021/02/bgp-rpki-and-manrs-2020-in-review/
Some vulnerabilities of BGP

Prefix hijacks
Blackholing
BGP lies
BGP session injection
Hijacks can be used to divert traffic and gain inside knowledge
Hijacks can be used to divert traffic and gain inside knowledge
Hijacks can be used to divert traffic and gain inside knowledge
Hijacks can be used to divert traffic and gain inside knowledge
Hijacks can be used to divert traffic and gain inside knowledge.
Multiple causes for hijacks

Hijacks are not always malicious
They can be the result of misconfigurations

Extract from the blog post:

“In recent years, we’ve noticed that single-digit ASNs (ASN1 through ASN9) often appear to be route hijackers. Is this true? We dug into the data and ultimately realized no, single-digit ASNs are not hijacking address space at an alarming rate. What’s happening is the result of a misconfiguration issue because of the “AS path prepend” command on Mikrotik routers.”

Hijacks are frequent
Some vulnerabilities of BGP

Prefix hijacks
Blackholing
BGP lies
BGP session injection
The purpose of blackholing is to protect against DDoS
DDoS are frequent

For examples Cloudflare reports that the number of DDoS quadrupled compared to pre-covid levels.

Source: https://blog.cloudflare.com/network-layer-ddos-attack-trends-for-q3-2020/
In a denial of service attack, the infrastructure may be congested.
Blackholing is a DDoS mitigation technique signaled via BGP.
Blackholing is a DDoS mitigation technique signaled via BGP.

Blackholing has a double-edged sword effect: all traffic is dropped.
BGP blackholing

Blackholing is a DDoS mitigation technique signaled via BGP.

Blackholing is announced via what is called a BGP community.
BGP community usage is increasing

Increasing usage warrants a closer look.
BGP community usage is increasing

Increasing usage warrants a closer look.
BGP Communities (RFC 1997)

By convention written $ASN:VALUE$
ASN can be both sender or intended 'recipient'. It's up to the peers to agree upon 'values' used. Every network decides on the semantics of values.
BGP Communities: Usage (examples)

<table>
<thead>
<tr>
<th>Informational Communities (Passive Semantics)</th>
<th>Action Communities (Active Semantics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location tagging</td>
<td>Remote triggered blackholing</td>
</tr>
<tr>
<td>RTT tagging</td>
<td>Path prepending</td>
</tr>
<tr>
<td></td>
<td>Local pref/MED</td>
</tr>
<tr>
<td></td>
<td>Selective announcements</td>
</tr>
</tbody>
</table>

Without documentation, you can not tell if a community is active or passive!

Blackhole community value is: 666 (RFC 7999)
Given the **increasing popularity** of BGP communities and the ability to **trigger actions** as well as **relay information**, the first question that comes to the mind of an Internet measurement researcher is...
What could possibly go wrong?
• Can blackholing be used with malicious intent?
• Are there different types of attacks?

• Are there any existing and relevant security mechanisms?
• Are these mechanisms enough?
Example topology

BGP update propagation
Example topology

BGP update propagation

Traffic flow
Example topology

BGP update propagation

BGP policies make AS2 not learn the path via AS4

Traffic flow
Example topology

BGP update propagation

BGP policies make AS2 not learn the path via AS4

BGP policies are distributed in the AS using BGP communities

Traffic flow
Example topology

BGP update propagation

BGP policies make AS2 not learn the path via AS4

BGP policies are distributed in the AS using BGP communities

In the next slides AS6 is the attacker
Hijack-0 and Blackjack-0

Sermpezis 2018 (Artemis)

Hijack type-0
AS2 and AS4 traffic is de-routed to AS6 because the advertised path is shorter.
Hijack-0 and Blackjack-0

Hijack type-0
AS2 and AS4 traffic is de-routed to AS6 because the advertised path is shorter.

Blackjack type-0
All traffic to P is blackholed at AS3.

Hijacking + blackholing
Best practices for legitimate blackholing empower blackjacks

Best Practices for blackholing

Give a **higher priority** to blackholing.

Do **not propagate** the advertisement across AS borders.

Best practices for legitimate blackholing empower blackjacks

Best Practices for blackholing

Give a higher priority to blackholing.
Do not propagate the advertisement across AS borders.

Consequences

Reach: Precedence over AS path length. Even ASes far away are vulnerable.

Stealth: The attacker is not dropping traffic himself.

4Cisco, Remotely Triggered Black Hole Filtering - Destination Based and Source Based.
Best practices for legitimate blackholing empower blackjacks

ROA Route Origin Authorizations are digitally signed objects attesting that a given AS is **authorized to originate** routes for a set of prefixes.

ROV With Route Origin validation, an AS **validates the origin** of the BGP updates with regard to the content of the RPKI Objects.

But other attacks are possible.
BGP Blackjacks - Type-N

The origin AS is legit. The AS-path is not.
BGPsec5

BGPsec allow ASes to \textit{sign} advertisements. This guarantees the AS path reflects the \textit{actual path} the advertisement went through.

\textbf{But on-paths attacks are still possible.}

5Lepinski and Sriram, \textit{BGPsec Protocol Specification}.

Related publications

Taxonomy of Attacks using BGP Blackholing.

BGP Communities: Even more Worms in the Routing Can.
Florian Streibelt (MPI\(^1\)), Franziska Lichtblau (MPI), Robert Beverly (NPS\(^2\)), Anja Feldmann (MPI), Cristel Pelsser (U. Strasbourg), Georgios Smaragdakis (TU Berlin), Randy Bush (IIJ\(^3\)). ACM IMC 2018.

\(^1\)Max Planck Institute for Informatics
\(^2\)Naval Postgraduate School
\(^3\)Internet Initiative Japan
Some vulnerabilities of BGP

Prefix hijacks
Blackholing
BGP lies
BGP session injection
An ISP (AS B) announces a path in BGP but forwards packets along a different path
An ISP (AS B) announces a path in BGP but forwards packets along a different path.
An ISP (AS B) announces a path in BGP but forwards packets along a different path

Because the peer C is cheaper

Or peer C pays B to access traffic data from AS A

Or ...
This difference in control and data paths may also be observed in the Kapela-Pilosov BGP monkey-in-the-middle attack.
This difference in control and data paths may also be observed in the Kapela-Pilosov BGP monkey-in-the-middle attack.
This difference in control and data paths may also be observed in the Kapela-Pilosov BGP monkey-in-the-middle attack.

But for packets to follow the traceroute path, the yellow AS faked a direct link to the prefix origin.
The general assumption is that

For each external prefix P...

- The control path (CP) advertised in BGP
- And the data path (DP) used in practice are the same
One form of BGP lie is when the control path (CP) and data path (DP) for a prefix P do not match.
Some vulnerabilities of BGP

Prefix hijacks
Blackholing
BGP lies
BGP session injection
BGP runs on top of TCP

• TCP is vulnerable to injection attacks
 The attacker
 • guesses the next sequence number
 • sends a packet with the sequence number and forged content
 The client accepts the content if it arrives before the legit packet

• The recommendation is to use MD5 for session authentication.
 • But there are tools able to provide payload for a given MD5 digest
 https://github.com/DavidBuchanan314/monomorph
 • What is the adoption status of TCP Authentication Option (TCP-AO) for BGP?
Some vulnerabilities of BGP

Prefix hijacks
Blackholing
BGP lies
BGP session injection
⇒ BGP designed with no security in mind
Weak authentication
No integrity protection
How we may hack to live with these vulnerabilities
Prevention

- RPKI ROA and ROV
 - State of deployment
- BGP filters
 - MANRS
- BGPsec
RPKI ROA

1,078,454 RIB entries covered by ROAs in May 2022 (V4 and V6 together).

MANRS ROA Stats Tool

Search for ROA stats by country or ASN using the links above

Data last retrieved 1 day(s) ago

<table>
<thead>
<tr>
<th>IPv4</th>
<th>Total</th>
<th>Valid ROAs</th>
<th>Unknown ROAs</th>
<th>Invalid ROAs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>922799</td>
<td>357837</td>
<td>556469</td>
<td>8493</td>
</tr>
<tr>
<td></td>
<td></td>
<td>38.78%</td>
<td>60.3%</td>
<td>0.92%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IPv6</th>
<th>Total</th>
<th>Valid ROAs</th>
<th>Unknown ROAs</th>
<th>Invalid ROAs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>139695</td>
<td>61793</td>
<td>76338</td>
<td>1564</td>
</tr>
<tr>
<td></td>
<td></td>
<td>44.23%</td>
<td>54.65%</td>
<td>13%</td>
</tr>
</tbody>
</table>

© 2021 - The Internet Society - manrs@isoc.org

https://roa-stats.manrs.org (October 6, 2022)
RPKI ROV

75 ASs deploy ROV (certainty above 0.7) according to rov.rpki.net (out of > 73.5k)

Last measurement was on 2020-08-31

From https://observatory.manrs.org/#/overview (Oct. 6, 2022)
BGP filters and MANRS

Mutually Agreed Norms for Routing Security (MANRS) rules for filter setting to prevent
• Leaks
• Misorigination
• Bogon prefixes
• Bogon ASs
From the AS itself and from direct customers
Deployement of protection increases but events still occur (NL)
Deployement of protection increases but events still occur (BR)
Detection

• BGP lies
Detection of BGP lies
Required data

Control paths

<table>
<thead>
<tr>
<th>P</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_Y</td>
<td>BCD</td>
</tr>
<tr>
<td>P_R</td>
<td>D</td>
</tr>
<tr>
<td>P_V</td>
<td>E</td>
</tr>
</tbody>
</table>

Data paths

Vantage Point (VP)
Traceroute per destination
Issues to consider

- Space-synchronization
 - Measurement platform

- Address space and time synchronization
 - Which DP should be compared with which CP

- IP-to-AS mapping
 - CPs come as AS-paths but DPs as IP-paths
Issues to consider

- Space-synchronization
 - Measurement platform

- Address space and time synchronization
 - Which DP should be compared with which CP

- IP-to-AS mapping
 - CPs come as AS-paths but DPs as IP-paths
Space-synchronization

- **Control paths** are obtained from a given router
- **Data paths** are gathered from a VP
- To be comparable, **DPs** need to go through the router that shared the **CPs**
IP-to-AS mapping

• While CPs are AS-paths, DPs are obtained as IP-paths

CP: AS A, AS B, AS C...
DP: IP1, IP2, IP3, IP4...

To compare them, an IP-to-AS mapping tool is needed!
The problem of IP-to-AS mapping
Noise or sources of errors

- AS siblings
Noise or sources of errors

- AS siblings
- Third-party addresses
Noise or sources of errors

- AS siblings
- Third-party addresses
- Missing hops
Our solution
A framework to detect BGP lies

- **Input:** CPs and DPs from a co-located VP
- **Output:** rate of BGP lies
A framework to detect BGP lies

- **Input:** CPs and DPs from a co-located VP
- **Output:** rate of BGP lies

- **Preparation stage:**
 - Address space synchronization
 - Time synchronization
 - Basic IP-to-AS mapping

- **Mapping relaxation**
 - AS siblings
 - Third-party addresses

- **Wildcards correction stage**
 - Missing hops
A framework to detect BGP lies

- **Input:** CPs and DPs from a co-located VP
- **Output:** rate of BGP lies

- **Preparation stage:**
 - Address space synchronization
 - Time synchronization
 - Basic IP-to-AS mapping

- **Mapping relaxation**
 - AS siblings
 - Third-party addresses

- **Wildcards correction stage**
 - Missing hops

...we are conservative!
Our measurements
Experiment setup

- Deployed 8 co-located VPs
- CPs collected every two hours
- DPs gathered targeting 80K destinations per day
- We run measurements multiple days (at least 13 days)
Low number of mismatches for most vantage points but they exist

At VP 7, the high number of "lies" is due to partial forwarding tables in the provider AS.

These partial tables also create detours in the provider.
Related publications

To conclude
Still a lot progress to be made in detection

- Because IP allocations, AS level, IP level topologies are not fully known we rely on heuristics to determine what is legit.
- We have collectors for BGP data and measurement platforms for traceroutes but the data is biased and redundant.
 - We work on methods to select the collection points for good coverage with reduced redundancy for BGP
Some of my work on detecting outages

And prevention is not a given

- It hardens operations, lengthen the feedback loop
Thank you!

Special thanks to my collaborators