
Advanced Networking Lecture 1: Introduction

Geert Heijenk, Pieter-Tjerk de Boer, Roland van Rijswijk-Deij, <u>Shyam Krishna Khadka</u>, <u>Cristian Hesselman</u>

University of Twente | September 6, 2024

Why did you decide to take Advanced Networking?

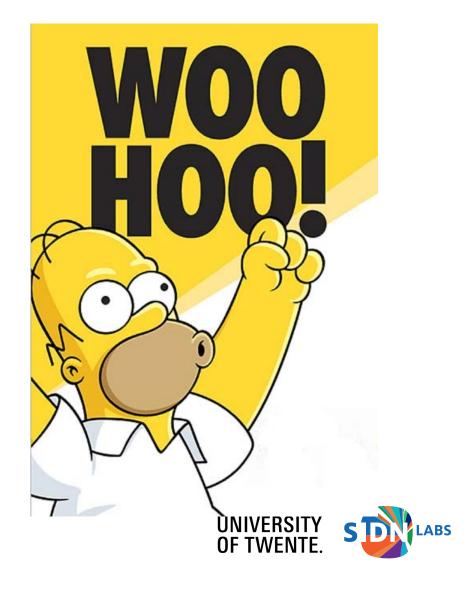
Your teaching team

Geert Heijenk (teacher)

Pieter-Tjerk de Boer (teacher)

Roland van Rijswijk-Deij (teacher)

Shyam Krishna Khadka (teaching assistant)



Cristian Hesselman (teacher and coordinator)

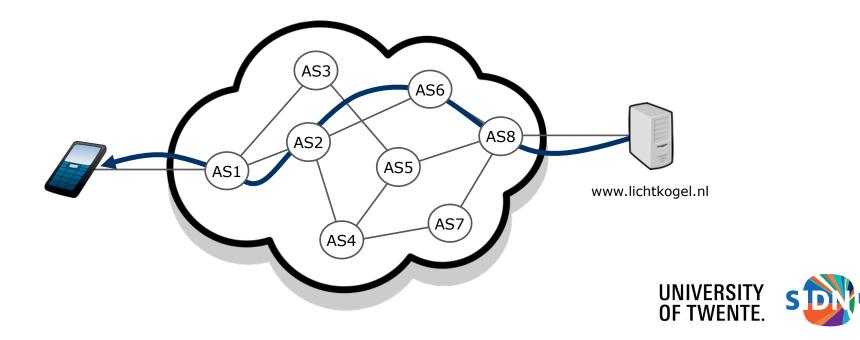
Today's learning objective

- Guide you through what we expect from you and why, and what you can expect from us
- Get you even more excited about internetworking :-)
- Answer questions you may have on assessment, deliverables, etc.

Agenda

- High-level introduction to how the Internet works (and a bit of history)
- Course overview
- Short overview of the P4 lab assignment (Shyam)
- Course changes and feedback

Agenda


- High-level introduction to how the Internet works (and a bit of history)
- Course overview
- Short overview of the P4 lab assignment (Shyam)
- Course changes and feedback

Q: What *is* the Internet?

Wikipedia: networks of networks

Internet: "the global system of interconnected computer networks that use the Internet protocol suite (TCP/IP) to link devices worldwide. It is a **network of networks** that consists of private, public, academic, business, and government networks of local to global scope, linked by a broad array of electronic, wireless, and optical networking technologies"

A set of properties or values

Critica	al Property	Benefits
1	An Accessible Infrastructure with a Common Protocol that is open and has low barriers to entry	Unrestricted access and common protocols deliver global connectivity and encourage the network to grow. As more and more participants connect, the value of the Internet increases for everyone.
2 volun	Open Architecture of Interoperable and Reusable Building Blocks based on open standards development processes tarily adopted by a user community	Open architecture creates common interoperable services, which deliver fast and permissionless innovation everywhere. The inclusive standardization process and demand-driven adoption ensures that useful changes are adopted, while unnecessary ones disappear.
3	Decentralized Management and a Single Distributed Routing System which is scalable and agile	Distributed routing delivers a resilient and adaptable network of autonomous networks, allowing for local optimizations while maintaining worldwide connectivity.
4	Common Global Identifiers which are unambiguous and universal	A common identifier set delivers consistent addressability and a coherent view of the entire network, without fragmentation or fractures.
5	A Technology Neutral, General-Purpose Network which is simple and adaptable	Generality delivers flexibility. The Internet continuously serves a diverse and constantly evolving community of users and applications. It does not require significant changes to support this dynamic environment.

ISOC, "The Internet Way of Networking – Defining the critical properties of the Internet", Sep 2020

Table 1: Abstract Architectural Criteria for Characterizing the Internet

Economic
(1) General Purpose Platform
(2) Markets
(3) Open Access
(4) Permission-less Innovation
(5) Decentralized, distributed ownership & control

W. Lehr, D. Clark, S. Bauer, A. Berger, P. Richter, "Whither the public Internet?", Journal of Information Policy 9, Aug 2019

Key concepts of inter-networking (1978)

- What data do I need? \rightarrow names
- Which device on the net hosts it? \rightarrow addresses
- How do I get there from my device? \rightarrow routes
- Q: what key concept is missing?

Internet Experiment Note # 19 Notebook Section 2.3.3.5

A note on

Inter-Network Naming, Addressing, and Routing

John F. Shoch

January 1978

Xerox Palo Alto Research Center Palo Alto, California 94305

Introduction

Taxonomies and terminology will not, by themselves, solve some of the difficult problems associated with the inter-connection of computer networks; but carefully choosing our words can help us to avoid misunderstanding and refine our perceptions of the task.

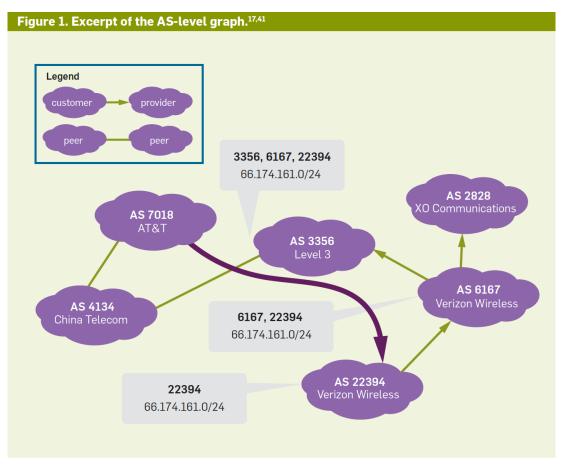
In 'Through the Looking Glass', the White Knight tries to elucidate (for an imprecise Alice) the important differences between what a song *is*, what it *is called*, what it *is named*, and what *the name is called*; perhaps we need to be equally vigilant with our use of the words 'name', 'address', and 'route'.

Let me offer one scheme which has proven useful in analyzing this domain, and begin by asserting that 'names', 'addresses', and 'routes' are different entities. [Even one of my favorite papers introduces part of this topic by merging two of these characteristics: "The question of addressing. or how to name all the participants in an interconnected communication system..."]

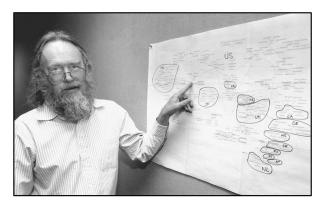
The General Model

We can first construct an extremely general definition:

The 'name' of a resource indicates *what* we seek,

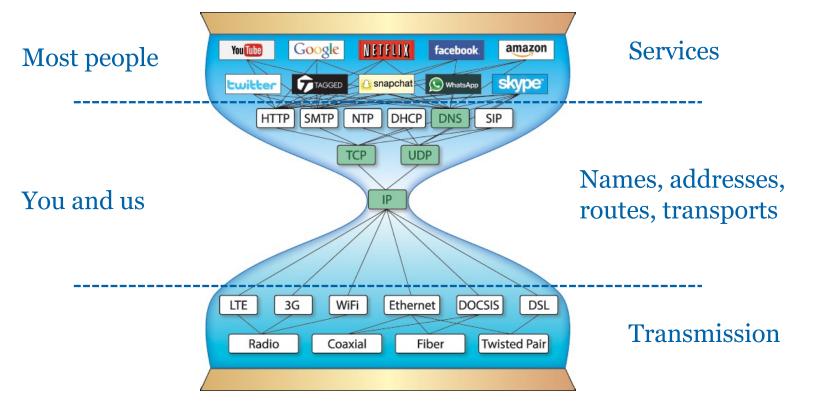

an 'address' indicates *where* it is, and

a 'route' tells us *how to get there*.

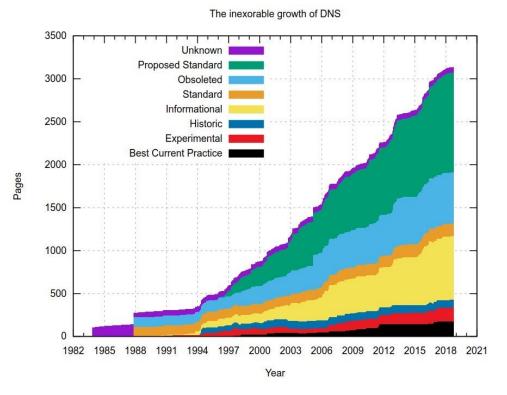


J. Shosh, "Inter-Network Naming, Addressing, and Routing", Internet Experiment Note #19, January 1978

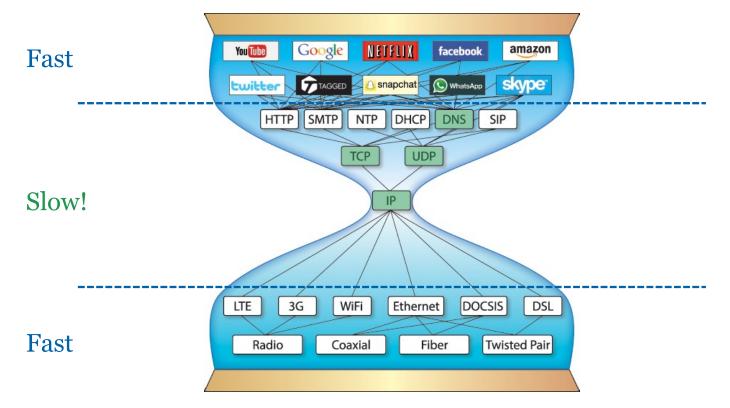
Largest collaboration ever


S. Goldberg, "Why is it taking so long to secure internet routing?", Communications of the ACM, Vol. 57, Issue 10, Oct 2014, pp. 56–63, https://doi.org/10.1145/2659899

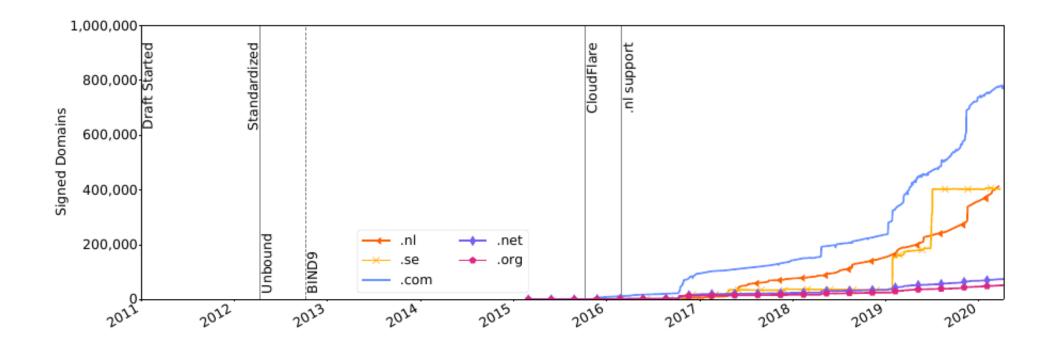
"The Internet works because a lot of people **cooperate** to do things together" – Jon Postel (1943-1998)



Under the hood: protocols and services


The complexity is huge

https://www.ietf.org/blog/herding-dns-camel/



Rate of change

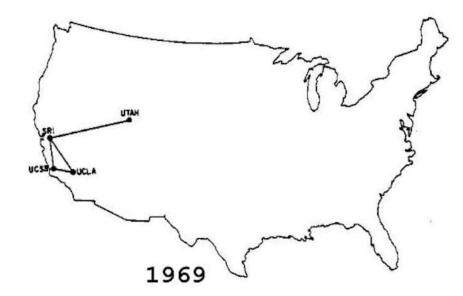
Example: ECDSA256 algorithm

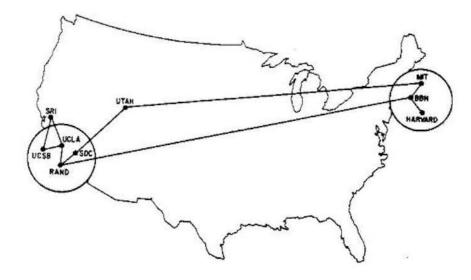
M. Müller, "Making DNSSEC Future Proof", Ph.D. thesis, University of Twente, Sep 2021

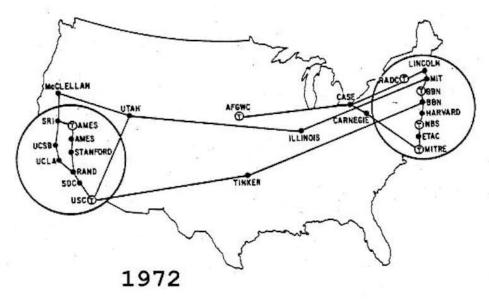
Q: When did the Internet start?

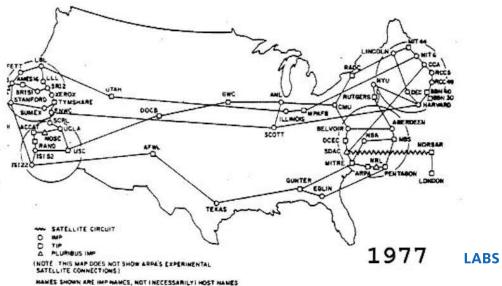
IEEE MILESTONE IN ELECTRICAL ENGINEERING AND COMPUTING

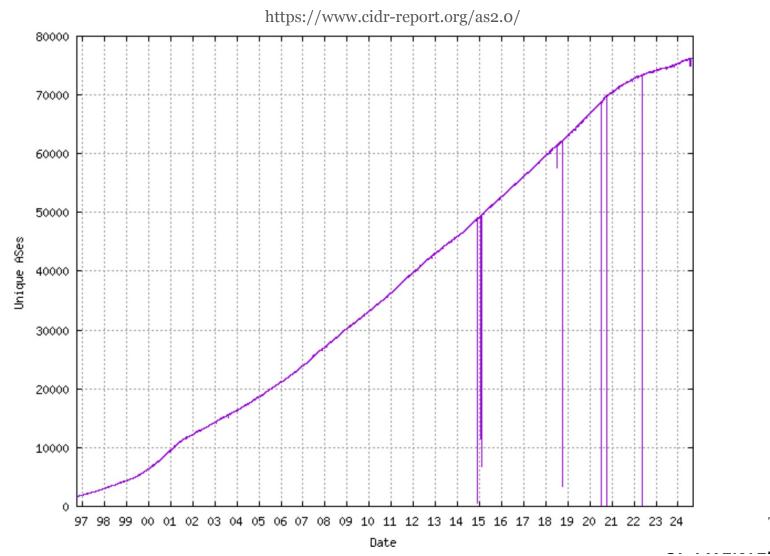
Birthplace of the Internet, 1969


At 10:30 p.m., 29 October 1969, the first ARPANET message was sent from this UCLA site to the Stanford Research Institute. Based on packet switching and dynamic resource allocation, the sharing of information digitally from this first node of ARPANET launched the Internet revolution.

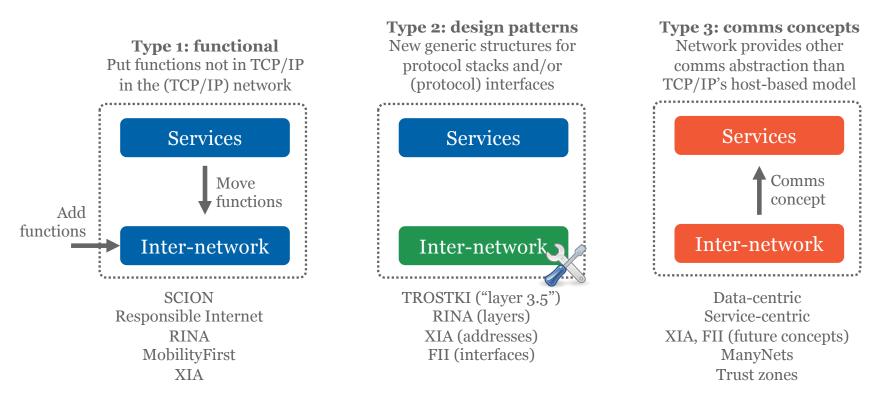

October 2009







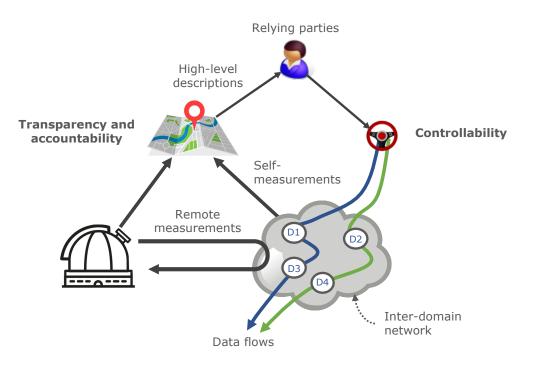




TCP/IP lessons learned

- Thin waist enabled worldwide deployment
 - Simple network layer (IP+BGP), weak demands on underlying networks
 - Stateless, unreliable, unordered, best-effort delivery
- Additions investigated include:
 - Multipoint communications, in addition to point-to-point model
 - Security, which is largely an add-on instead of an integral part of the core protocols
 - Mobility management (movement between networks)
 - Restrict the impact of local incidents so they don't have global effects (e.g., a CA compromise)
 - Path verification capabilities

Proposed changes in the literature



Overview: D. Clark, "Designing an Internet", MIT Press, 2018

Example: the "responsible Internet"

- Addresses lack of insight in and control over Internet's end-to-end structure and operation
- Tree new **design goals**: controllability, accountability, and transparency (CAT)
- Hypothesis: enables relying parties to communicate with more confidence and trust
 - Critical service providers
 - Policy makers
 - Network operators
 - Individuals

Details: www.catrin.nl

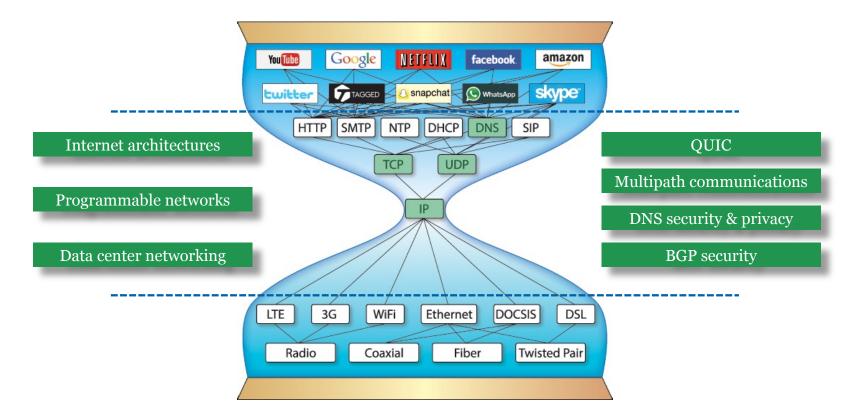
Overall challenge: "[...] the technical architecture must accommodate the tussles of society while continuing to achieve its traditional goals of scalability, reliability, and evolvability. This expansion of the Internet's architectural goals is a difficult, but central technical problem." [TUSSLE]

> [TUSSLE] D.D. Clark, J. Wrocławski, K.R. Sollins, and R. Braden, "Tussle in cyberspace: defining tomorrow's Internet", IEEE/ACM Transactions on Networking, Vol. 13, Issue 3, June 2005

Summary

- Relatively simple design of the Internet's core protocols solved problem of ubiquitous connectivity, Internet now critical for almost every aspect of our everyday life and for our society
- Challenge: how to align the Internet's services with society's increasing demands?
 - Higher levels of trust and autonomy to support new safety-critical applications
 - New network functions (e.g., security, privacy, real-time guarantees)
 - Draw inspiration from (open programmable) internet designs
- We expect that some of these new concepts will have an impact on deployed network infrastructure in the next few years and ANET will help you navigate that space

Agenda


• High-level introduction to how the Internet works (and a bit of history)

Course overview

- Short overview of the P4 lab assignment (Shyam)
- Course changes and feedback

ANET topics

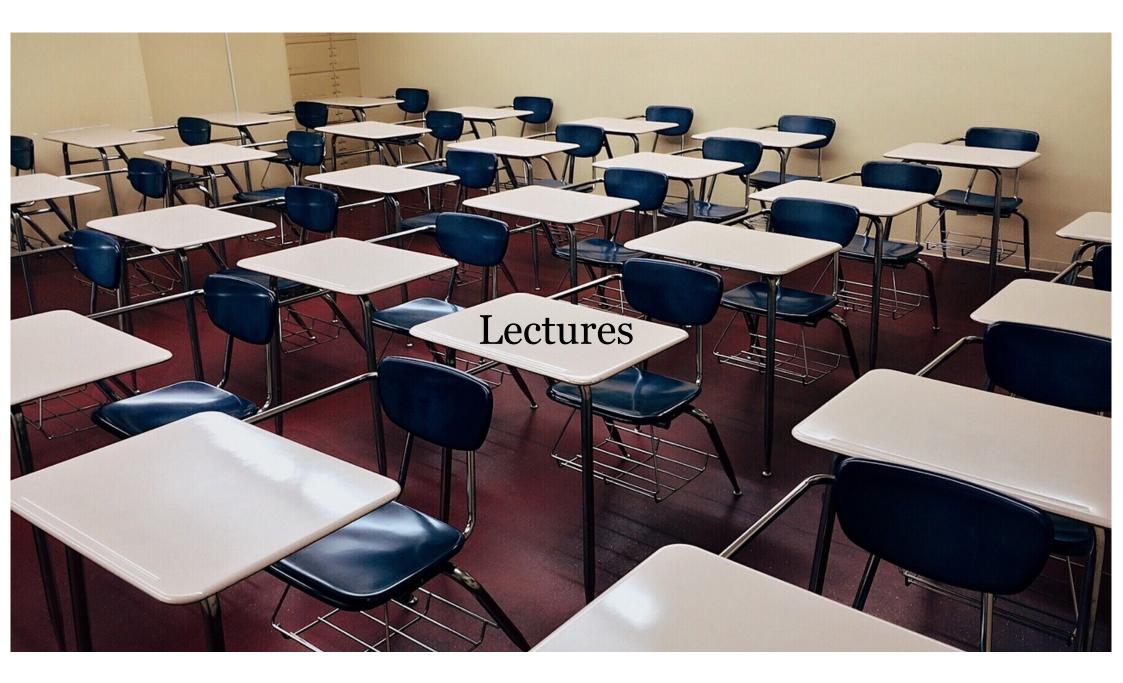
ANET is an **overview** course based on **research** papers. It complements Internet Security, which goes more into depth on the security of **specific Internet protocols**.

Learning goals

- After successful completion of the course Advanced Networking (ANET) you will be able to:
 - Analyze, compare, and discuss various **advanced Internet concepts**, such as secure interdomain routing and multi-path data delivery
 - Understand and discuss important **challenges and proposed experimental solutions**, including non-IP-based internetworking systems
 - Apply a domain-specific language such as **P4** to implement basic data plane functionality of an open programmable router, which is important for future Internet infrastructures
- Enhance your research skills because you'll need to independently review and analyze research papers and RFCs

Prerequisites

- Introductory course on computer networks
- Such as the bachelor module Network Systems at the University of Twente


Make sure to **browse** a few of the ANET papers this week to double-check that ANET matches your interests, study plan, prerequisites, etc.

Staying up to date

- https://courses.sidnlabs.nl/anet/
 - Authoritative source: papers, assessment, deliverables, etc.
 - Public site so other teachers/universities can potentially learn from our format
- https://canvas.utwente.nl/
 - Announcements and communications
 - Uploading and archiving of deliverables
- https://cloud.timeedit.net/nl_utwente/web/
 - Lecture rooms and times
 - Keep an eye on it, the Time Table folk may make changes on the fly!

Regular lectures

- Eight interactive technical lectures
 - Protocols and Internet architectures/deployments
 - Motivation: enhance your "networking horizon"
- Each lecture revolves around a **specific theme**
 - Topics cover core functions of inter-domain networking (e.g., naming, routing, security)
 - Motivation #1: give you a broad overview of advanced networking functions
 - Motivation #2: our research interests (we love to talk about the work we do :-)
- Attendance is **mandatory** because of group tests and discussions (see next slides)

Themes

- "Going up the stack": programmable networks (hardware), BGP security, DNS security and privacy, multi-path communication, QUIC, data center networking, Internet architectures
- Papers cover a quarter of a century of networking research, with the oldest one from the Internet's proverbial "stone age" (1995)
- Help you understand generic network architectures and principles, not so much latest and greatest topics
- Additional reading on the ANET site

The Design Philosophy of the DARPA Internet Protocols

David D. Clark* Massachusetts Institute of Technology Laboratory for Computer Science Cambridge, MA. 02139

(Originally published in Proc. SIGCOMM '88, Computer Communication Review Vol. 18, No. 4, August 1988, pp. 106–114)

Abstract

The Internet protocol suite, TCP/IP, was first proposed fiften years ago. It was developed by the Defense Advanced Research Projects Agency (DARPA), and has been used widely in military and commercial systems. While there have been papers and specifications that describe how the protocols work, it is sometimes difficult to deduce from these why the protocol is as it is. For example, the Internet protocol is based on a connectionless or datagram mode of service. The motivation for this has been greatly misunderstood. This paper attempts to capture some of the early reasoning which shaped the Internet protocols.

1. Introduction

CM SIGCOMM

For the last 15 years¹, the Advanced Research Projects Agency of the U.S. Department of Defense has been developing a suite of protocols for packet switched networking. These protocols, which include the Internet Protocol (IP), and the Transmission Control Protocol (TCP), are now U.S. Department of Defense standards for internetworking, and are in wide use in the commercial networking environment. The ideas developed in this effort have also influenced other protocol suites, most importantly the connectionless configuration of the ISO protocols^{2+,4}.

While specific information on the DOD protocols is fairly generally available^{5,5,7}, it is sometimes difficult to determine the motivation and reasoning which led to the design.

In fact, the design philosophy has evolved considerably from the first proposal to the current standards. For example, the idea of the datagram, or connectionless service, does not receive particular emphasis in the first paper, but has come to be the defining characteristic of the protocol. Another example, is the layering of the paper but has come to be the defining characteristic of architecture into the IP and TCP layers. This seems basic to the design, but was also not a part of the original proposal. These changes in the Internet design arose through the repeated pattern of implementation and testing that occurred before the standards were set.

The Internet architecture is still evolving. Sometimes a new extension challenges one of the design principles, but in any case an understanding of the history of the design provides a necessary context for current design extensions. The connectionless configuration of ISO protocols has also been colored by the history of the Internet suite, so an understanding of the Internet design philosophy may be helpful to those working with ISO.

This paper catalogs one view of the original objectives of the Internet architecture, and discusses the relation between these goals and the important features of the protocols.

2. Fundamental Goal

The top level goal for the DARPA Internet Architecture was to develop an effective technique for multiplexed utilization of existing interconnected networks. Some elaboration is appropriate to make clear the meaning of that goal.

The components of the Internet were networks, which were to be interconnected to provide some larger service. The original goal was to connect together the original ARPANET[®] with the ARPA packet radio network^{*},^{**} in order to give users on the packet radio network access to the large service machines on the ARPANET. At the time it was assumed that there would be other sorts of networks to interconnect, although the local area network had not yet emerged.

An alternative to interconnecting existing networks would have been to design a unified system which as <u>Alteroprotected</u> and return fulforent transmission media, a

One theme per lecture

- One introductory paper
 - Tested through a closed book multiple-choice test in class
 - First do the test individually, then the same test in a group with 2-3 of your fellow students
 - Group test enables you to learn from your peers by discussing the test's questions
- Two **advanced papers** that explore the topic in more depth
 - Tested through a blog and a presentation
 - One or two presentations per lecture, schedule on the ANET site
- We'll publish the **best blog** on the ANET website (with the author's consent)

Timetable (yes, micromanagement)

Time	What
10:45	Arrival, put your cell phone in your bag, pick up hardcopy of tests at teacher's desk, sit down
10:45-10:50	Lecture introduction (teacher)
10:50-11:00	Individual test of introductory paper (closed book) Teacher will pick up the tests when everyone is done
11:00-11:05	Organize into groups (teacher divides you across groups)
11:05-11:15	Group test of introductory paper (closed book) Teacher will pick up the tests when everyone is done
11:15-11:35	Plenary discussion of the paper and the test
11:35-11:45	Break
11:45-12:00	Presentation #1 (10 minutes presentation, 5 minutes Q&A)
12:00-12:15	Presentation #2 (10 minutes presentation, 5 minutes Q&A)
12:15-12:30	Further discussion of the two papers
12:30	Adjourn
	UF IWENIE.

Guest lectures

- Goal: give you a flavor of operational network infrastructure and current research
- Wed Sep 25: Eric van Uden, AVM ICT GmbH, on management of CPEs in access networks
- SURF on their education and research infrastructure (speaker and date TBD)
- Open to everyone

Your deliverables

Overview

- 1. A total of **8 multiple-choice tests** on introductory papers
- 2. A **blog** in which you review one of the advanced papers
- 3. A **presentation** of 15 minutes about that paper at one of the lectures
- 4. Lab **exercises** about programing for a P4-enabled router

Deliverable #1: multiple choice tests

- One topic per lecture (e.g., BGP security)
- One individual test per lecture: assess your understanding of the introductory paper
 - Grade = maximum of ((S-G)/(Q-G))*9+1 and 1
- One group test per lecture
 - Do the individual test once more, but in groups (group-based learning)
 - One open question on the main takeway of the paper (at most 25 words, must be a sentence)
 - Grade = maximum of ((S-G)/(Q-G))*8+O+1 and 1
- Not tested: 20 min open discussion at the end of each lecture

Multiple-choice test example

Test Ad	vanced Networking (20 Oct 23, 2019	01700077)	
	uno pluria: The Service-Infrastr f the Internet", ACM SIGCOMM Ianuary 2018		
Your name(s) and stude	ent number (s):		
Individual test	Gr	oup test	
 Each correct answei Individual test: prov Group test: you ma them, each group m We calculate the gr the test randomly This test is "closed t Use of laptops, mob 	uestions by putting A, B, C, or I gives you 1 point, a wrong ans ide 1 answer. Multiple answers. If the answers. If the ember gets ://(the number of n ide of your test in a way that c book", i.e., no papers or any ot ile phones etc. is not allowed.	swer will give o will get you o correct answer narked answer compensates fo her materials a	points. points. er is among s). or filling out llowed.
Question #1	of the ossification of the Intern		ir answer
 A. The many Internet p B. Operators are unable 	layers make it difficult to agree e to make a business case for c rnet makes it difficult to deplo	e on required o hanges to thei	hanges. r networks.
Question #2		Υοι	ır answer
In the past, the ingred have been:	ients to successfully introduce	e new Interne	t functions

C. A testbed to experiment with	eployment, and new service requirements.
Question #3	Your answer
situation to a OneNet (i.e., the In A. Making network connectivity B. Supporting every future servi	ice. ultiple-administrative-domains approach.
Question #4	Your answer
ManyNets?	transition from a OneNet back to a world o
ManyNets? A. Difficulty for researcher to ex B. Commercially available progr C. New application requirement D. Service and content provider	periment with new technologies in a OneNet. ammable routers make ManyNets possible. Is that the OneNet can't fulfill. Is want to operate their own networks.
ManyNets? A. Difficulty for researcher to ex B. Commercially available progr. C. New application requirement	periment with new technologies in a OneNet. ammable routers make ManyNets possible. Is that the OneNet can't fulfill.
ManyNets? A. Difficulty for researcher to ex B. Commercially available progr C. New application requirement D. Service and content provider Question #5 What does the author consider world?	periment with new technologies in a OneNet. ammable routers make ManyNets possible. s that the OneNet can't fulfill. s want to operate their own networks. Your answer a major challenge for the emerging ManyNet ucture so that it meets new demands. the OneNet. we services in a ManyNet.
ManyNets? A. Difficulty for researcher to ex B. Commercially available progr C. New application requirement D. Service and content provider Question #5 What does the author consider world? A. Evolving a ManyNets infrastrn B. Connecting the ManyNets to all solve of all yellow of the origity deploy no S. Being able to easily deploy no	periment with new technologies in a OneNet. ammable routers make ManyNets possible. s that the OneNet can't fulfill. s want to operate their own networks. Your answer a major challenge for the emerging ManyNet ucture so that it meets new demands. the OneNet. we services in a ManyNet.

	B. De-ossifying the Internet.C. The many new opportunities of ManyNets.D. Interconnecting ManyNets.	
	Question #7 Your answer	
L	In what sense is 5G an example of the emergence of ManyNets? A. It is a separate network not connected to the Internet. B. Google will create its own wide-area network because they can't use 5G. C. 5G "slicing" splits the network into three different sets of capabilities. D. 5G networks only serve large numbers of IoT devices	
	== END OF TEST ==	
	OF TWENTE.	S

Deliverable #2: blog

- 1.500 words tops on an advanced paper
- Goal: readers should be able assess if they'd like to read the full paper based on your blog
- Your target audience are readers with a background in computer networking
- The blog must be self-contained, which means readers shouldn't have to consult other sources
- Start with a section in which you explain the paper's three main takeways (<= 150 words)
 - See "Key Insights" on page 1 of [SCION] for an example

Example topics to blog about

Design paper (e.g., [SCION])	Measurement paper (e.g, [DNS-SP])
 What is the problem that the authors aim to solve? What requirements do the authors articulate for their work? What does the high-level design and operation of their proposed system look like? How does the design address the requirements? What are the pros and cons of the authors' work and why? What would you do differently? Would you recommend the paper to interested readers? 	 What is the problem that the authors aim to solve? What methodology and experimental setup do the authors use? What are their key findings and conclusions? How do they propose others use their measurement study? What are the pros and cons of the authors' work and why? What would you do differently? Would you recommend the paper to interested readers?

Write the blog in your own words

Style		Example
Citing	\checkmark	In our lab experiment, we use Manufacturer Usage Descriptions (MUDs) [RFC8250] to describe the network behavior of IoT devices.
Quoting	\checkmark	MUD was designed to "provide a means for end devices to signal to the network what sort of access and network functionality they require to properly function" [RFC8250]
Copying	×	MUD was designed to provide a means for end devices to signal to the network what sort of access and network functionality they require to properly function [RFC8250]

- Also cite and quote sources where you are a co-author, if applicable
- As per the university's policy, no forms of plagiarism are tolerated (check through Canvas)

Reflection

- The process you followed to study the paper, understand its contents, and write the blog
- How you incorporated the feedback you received at your presentation
- In a short appendix at the end of your blog

Use of ChatGPT and similar tools

- You may use ChaptGPT, Grammarly or other tools to help you improve the language of your blog, but the original content MUST be written by you
- Your blog MUST include either of these two statements:
 - "AUTHOR DECLARATION: During the preparation of this work, I used [NAME TOOL/SERVICE] ONLY to improve the language of my blog. I confirm that I alone wrote the original text in full and that I then reviewed and edited the content using [NAME TOOL/SERVICE]. I take full responsibility for the content of the work.", OR
 - "I did not use any artificial intelligence tools to write my blog."
- In line with UT policy on use of AI: https://www.utwente.nl/en/learningteaching/expertises/AI%20In%20Education/use-of-ai-in-education-at-the-university-oftwente.pdf

Who writes about which paper?

• Indicate your **ranked top 5** (1st, 2nd, 3rd, etc.) through Canvas by **Fri Sep 6**, **EOB**

First name	Blogs about
•••	[]
	[]
•••	[]
	[]
	[]
	[]
	[]
	[]
	[]
	[]

Grading of your blog

- We will evaluate your blog based on the following criteria:
 - Understanding: how well did you understand the paper, for instance in terms of the problem it aims to solve and the paper's key points?
 - Analysis: to what extent did you provide a critical analysis of the paper, for instance in terms of the pros/cons of the work, limitations of the proposed solution/approach, and potential improvements?
 - Clarity: structure, language, and readability of the blog
- The ANET teacher who gives a particular lecture will evaluate the blogs of that lecture
 - In addition, one of the other teachers will review your blog for a cross-check
 - They both use the evaluation criteria listed above to grade your blog

Deliverable #3: presentation

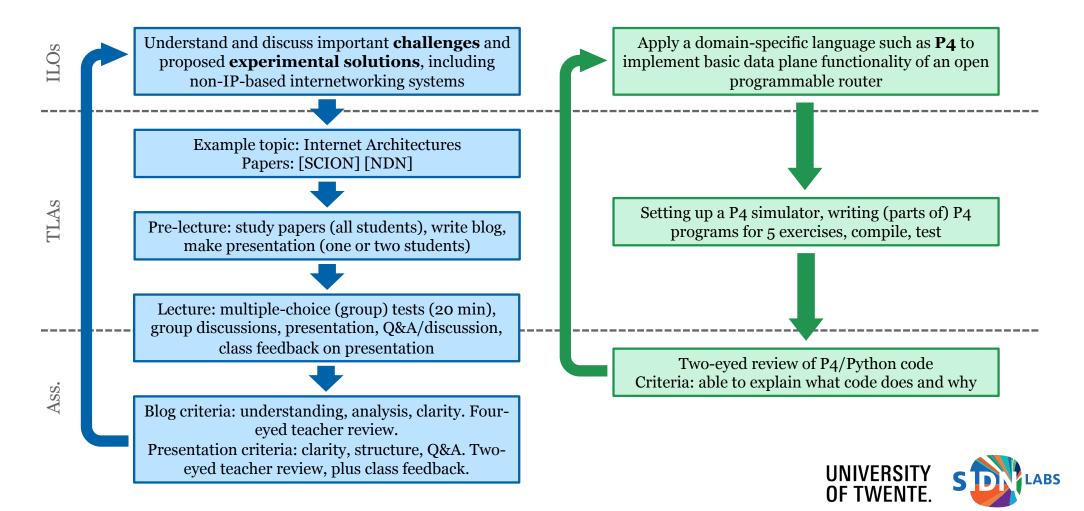
- Present 1 advanced paper to your peers in at most 15 minutes, including 5 minutes of Q&A
- Give your three main take aways of the paper on your first slide
- Teachers will score based on clarity, structure, and how well you responded to questions
- Your fellow students will do the same through a feedback form that we'll hand out
- Pointers on how to make a presentation are on the ANET website

Deliverable #4: P4 lab assignment (1/2)

- Goal: **get a first hands-on experience** on how to program the packet handling functions of a simulated router using the domain-specific language P4. Non-goal: provide you with an in-depth understand of P4, which would require a separate course
- Carry out the P4 assignment **individually** during the two lab sessions or at home
- Teaching Assistant signs off **at one of the two lab sessions**
- Key **requirements** you'll need to fulfil to get your P4 assignments signed off are:
 - Your P4 code needs to run and shows the expected behavior
 - You're able to explain the Teaching Assistant what's going on and why
 - You added comments to your P4 code explaining what you did and why

Deliverable #4: P4 lab assignment (2/2)

- Work on the P4 lab assignment **at home** and not only at the lab sessions!
 - You might need to fix bugs that will take time to find
 - The Teaching Assistant needs to help multiple students at the lab sessions, so might not always be immediately available for you
- We'll have a paper on P4 in the second lecture
- Shyam will provide a lab intro after my talk
- Potentially an extended introduction



Assessment

- Goal: evaluate to what extend you attained ANET's learning goals
- Pass if (((average score of your 8 individual tests)*25% + (average score of your 8 group tests)*25% + (score of your blog)*40% + (score of your presentation)*10%) * (score of your lab assignment)) >= 5.5
- The scores of the tests, blog, and presentation are between 1 (worst) and 10 (best)
- The score of the lab assignment is either 1 (pass) or 0 (fail)

Connecting it all: learning goals, activities, assessment

Important dates

- Ranked top five of papers you'd like to blog about (1st, 2nd, etc.): Fri Sep 6, 2024
- Individual and group test: at each lecture
- Blog: **one week after** the lecture in which you presented the paper
- Lab assignment: by the **end of the last lab session** (see ANET schedule)
- Notification of grades: two weeks after the last lecture, so around Nov 15, through Canvas

Plan ahead!

- You need to deliver every weel
- Writing a good blog and making a presentation takes time!

Agenda

- High-level introduction to how the Internet works (and a bit of history)
- Course overview
- Short overview of the P4 lab assignment (Shyam)
- Course changes and feedback

Agenda

- High-level introduction to how the Internet works (and a bit of history)
- Course overview
- Short overview of the P4 lab assignment (Shyam)
- Course changes and feedback

Change log

Class of 2023/2024 feedback (summary)

Having small tests every week helped me test myself and my understanding Group tests are also nice because you can discuss the topics from different perspectives.

The "basic" papers are well chosen as they all give a high-level view on each topic The practical was interesting, but we could have had more sessions to discuss it and its purpose

Some classes had a quick introduction to the topic, but not all of them

#happy

Changes based on feedback class of 2023/2024

- Better explained the goal of the P4 exercise
- Added a 5-minute intro to each lecture, for instance to explain why the topic is relevant
- Replaced paper [QUIC2]

To what extent do you understand what we expect from you and why, and what you can expect from us?

See you next week!

Fri Sep 13, 10:45-12:30 Topic: programmable networks

Cristian Hesselman Director of SIDN Labs cristian.hesselman@sidn.nl +31 6 25 07 87 33

