Lecture #5: IoT Honeypots

Cristian Hesselman, <u>Elmer</u> Lastdrager, Ramin Yazdani, and <u>Etienne</u> Khan

University of Twente | May 20, 2020

Lab assignment

- MUD descriptions: you'll need to generate them yourselves, tools are available
- IoT devices: you'll need to work with the actual hardware, no emulations (unless as an extra)
- Use IoT devices without a browser-like interface, such as light bulbs, audio speakers, doorbells
- Do not use multi-purpose devices like tablets, phones, laptops
- At least 2 IoT devices per group of 3 and at least 3 devices per group of 4

• Etienne Khan available for assistance

Paper summaries

- You must have handed in your two summaries BEFORE this lecture
- You can use the summaries during the oral exam ("open book")
- You <u>cannot</u> complete SSI without submitting 12 paper summaries!

Interactive Lecture

- Goal: enable you to learn from each other and further increase your understanding of the papers (contributes to preparing yourself for the oral exam)
- Format:
 - 1. We'll ask someone to provide their verbal summary of the paper
 - 2. 5-slide(-ish) summary by teachers (put any questions in the chat)
 - 3. Questions: discussion starters and fact questions
 - 4. Discussion (use your mic)
 - 5. We may ask someone specific to start the discussion
- Experimental format resulting from Corona pandemic, please provide feedback!

Today's papers

Are about measuring IoT botnets

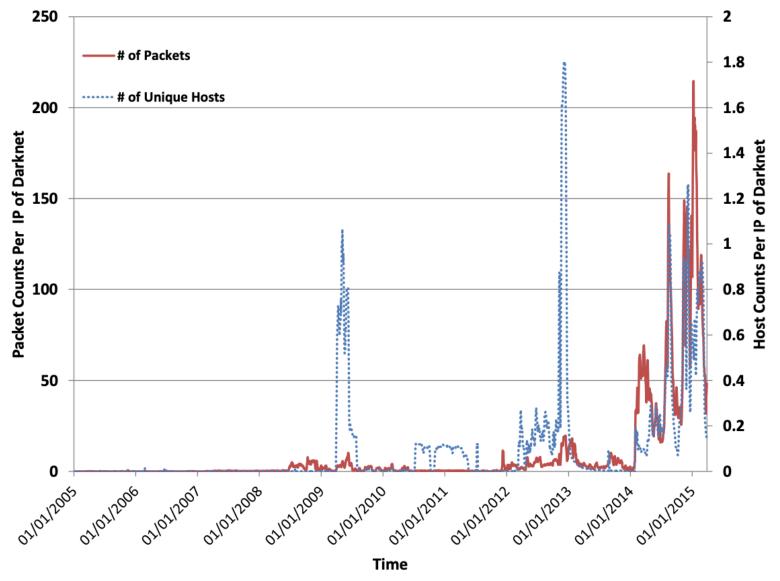
- **[IoTPOT**] Yin Minn Pa Pa, Shogo Suzuki, Katsunari Yoshioka, Tsutomu Matsumoto, Takahiro Kasama, Christian Rossow. "IoTPOT: Analysing the Rise of IoT Compromises". 9th USENIX Workshop on Offensive Technologies (co-located with USENIX Sec '15), WOOT '15, Washington, DC, <u>https://christian-rossow.de/publications/iotpot-woot2015.pdf</u>
- [Honware] Vetterl, Alexander, and Richard Clayton. "Honware: A virtual honeypot framework for capturing CPE and IoT zero days." Symposium on Electronic Crime Research (eCrime). IEEE. 2019. <u>https://www.cl.cam.ac.uk/~amv42/papers/vetterl-clayton-honware-virtual-honeypot-framework-ecrime-19.pdf</u>

"IoTPOT: Analysing the Rise of IoT Compromises", 9th USENIX Workshop on Offensive Technologies (WOOT), 2015

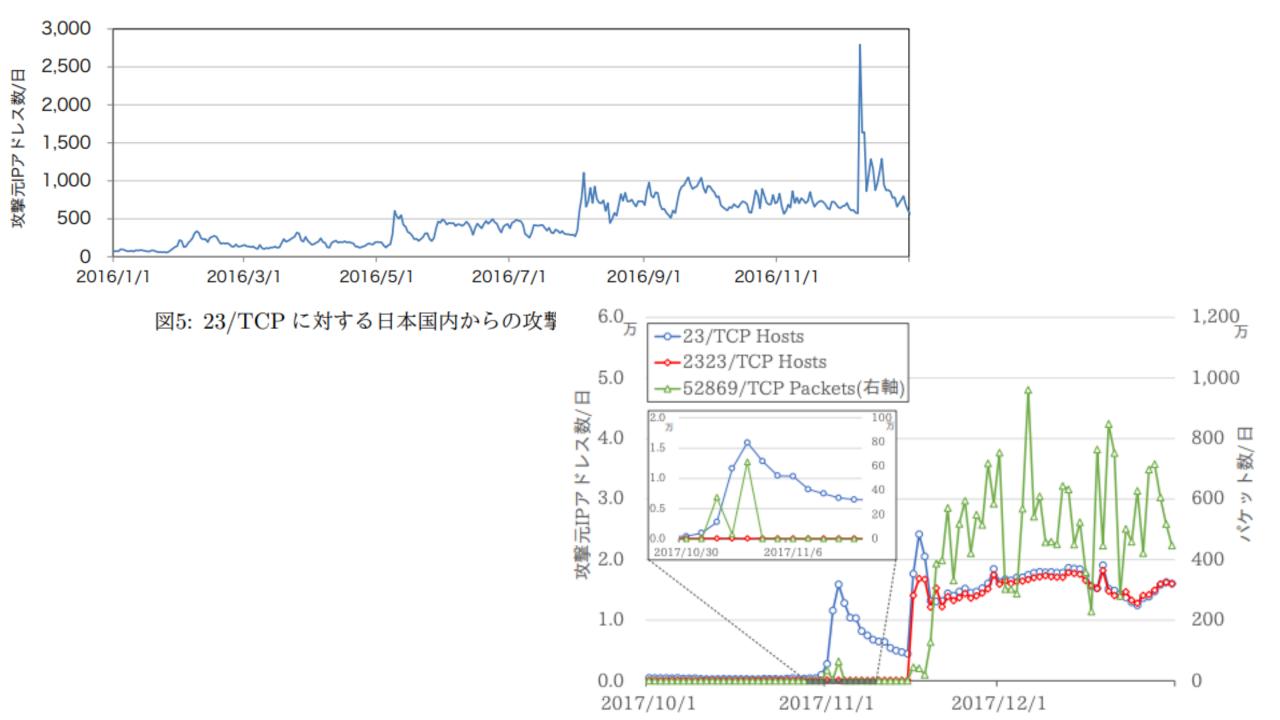
Darknet monitoring

270.000 IP's

Connect back 23/80 TCP


& collect banners.

Dovido Typo	Host	Device Model
Device Type	Count	Count
DVR	1,509	19
IP Camera	523	16
Wireless Router	118	45
Customer Premises Equipment	65	1
Industrial Video Server	22	1
TV Receiver	19	2
Heat Pump	10	1
EMU System	9	1
Digital Video Scalar	5	2
Router	4	3


Table 1 - Scanning hosts and device models

Darknet monitoring (2)

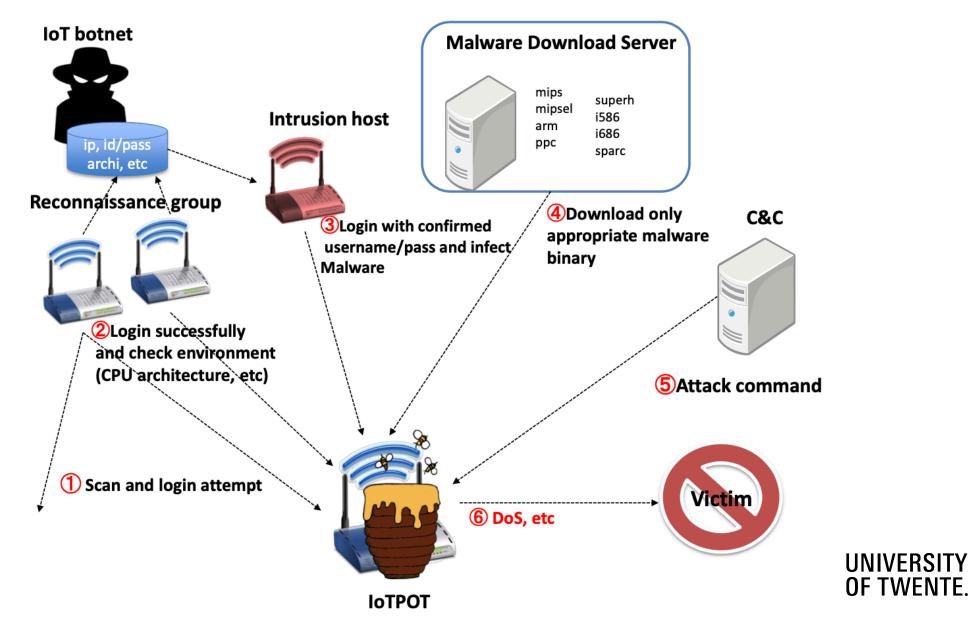
Why is a **darknet** useful for IoT malware research?

A: Malware runs better, because it's from the dark side B: No legitimate traffic

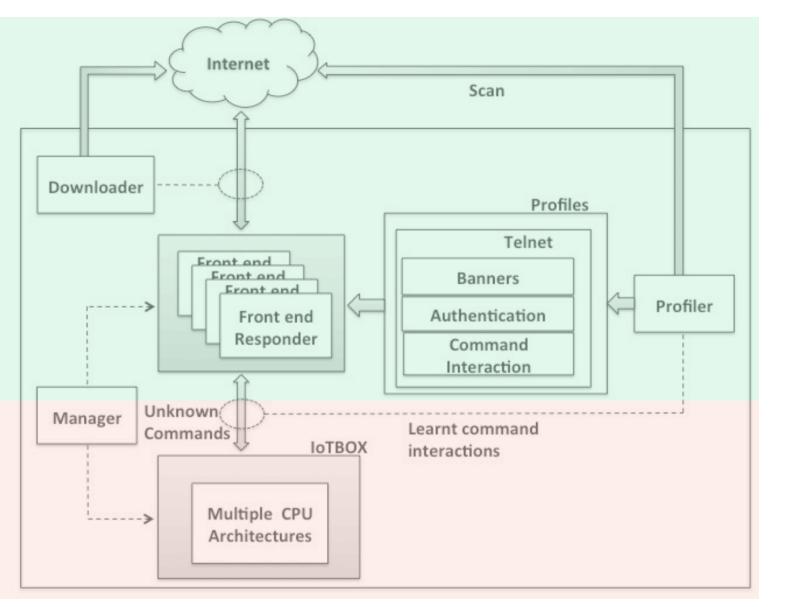
C: No legal problems because a darknet is not managed by any company D: It has residual trust from previous use

IoT POT

Running on 165 IP addresses


5 weeks running time

Telnet attack stages:

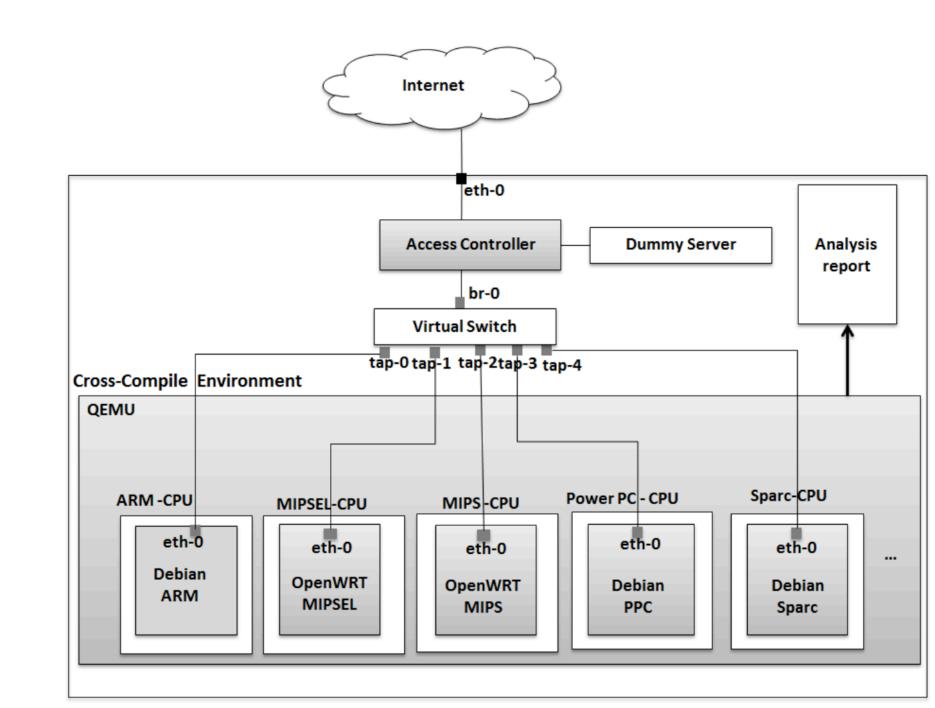

(1) Intrusion; (2) Infection; (3) Monetization. *Remember Mirai?*Credentials in Fixed/Random order (1)6 patterns of commands (2) distinguished

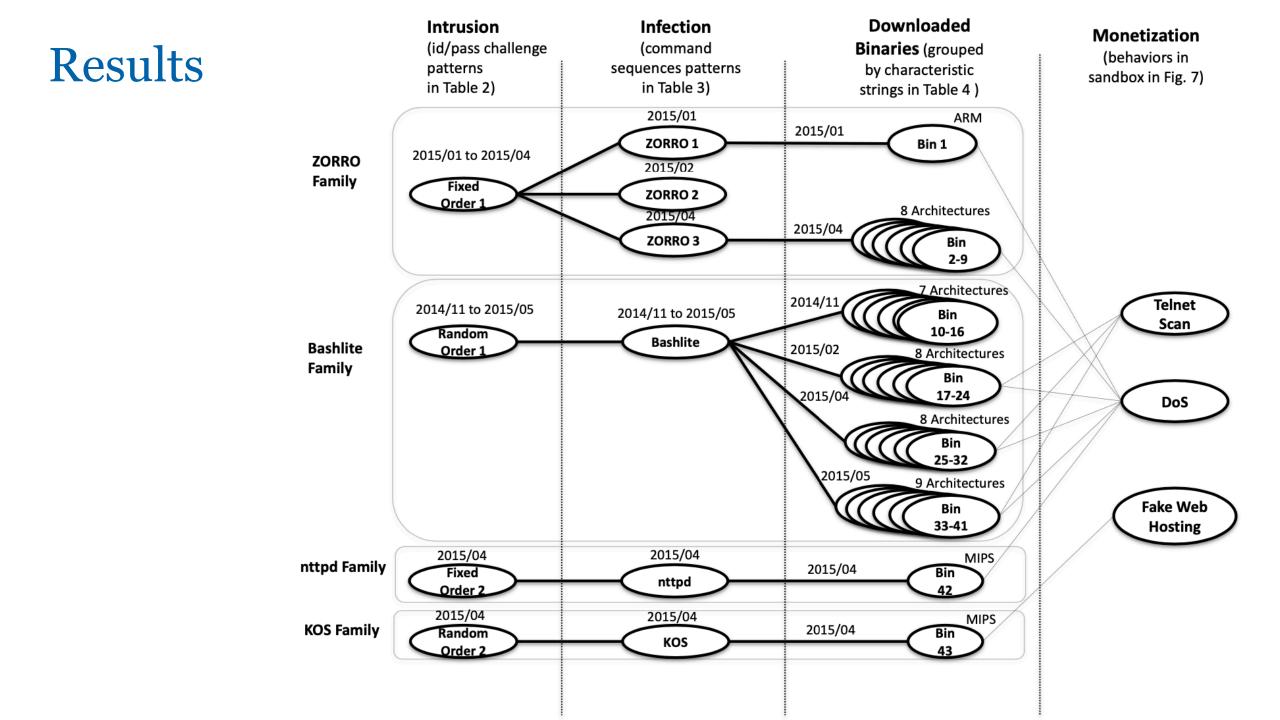
'Coordinated intrusion'

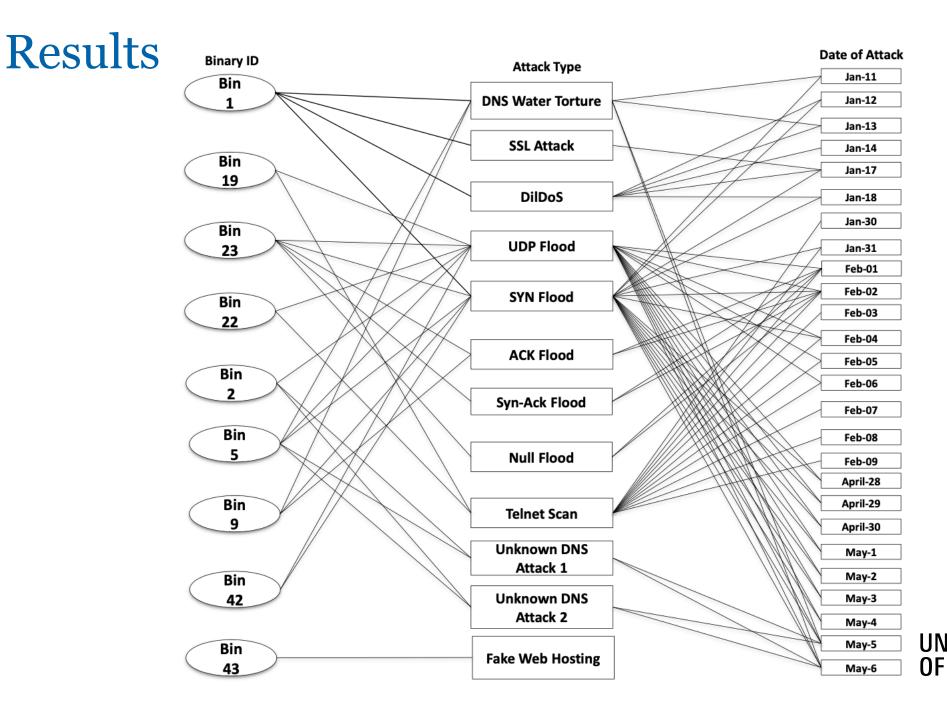
IoTPOT & IoTBOX

What would an operator of an IoTPOT honeypot need to do to support Hajime?

A: Add support for MIPS CPU architectureB: Track DHT (P2P) communicationsC: Expose many vulnerabilitiesD: Run the honeypot in different subnets




IoTBOX


Sandbox with 8 CPU architectures

Limit outgoing to DNS/HTTP 5ppm

Telnet to Dummy server

Most important next-step

- A: More CPU architectures
- B: Passthrough and monitor C&C traffic
- C: Standardized botnet profiles for sharing between organizations
- D: Running on real (IoT) hardware

Key takeaways

IoT world heterogeneous => honeypots more complex

High-interaction needed to get useful results

Require many (!) IP addresses to catch scans

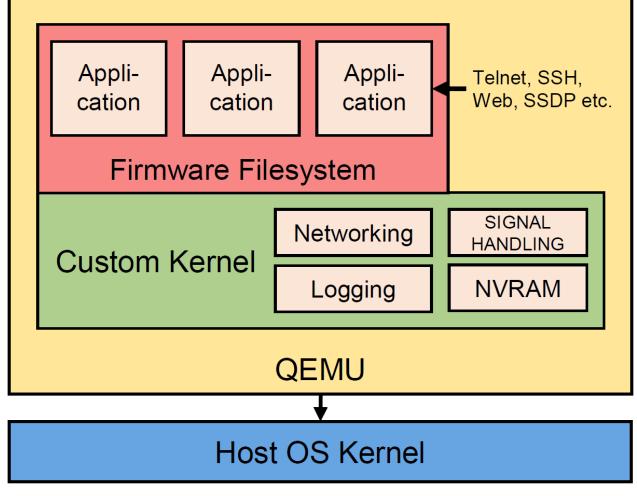
Discussion

- \Rightarrow What is IoT about IoTPOT?
- \Rightarrow Ethical considerations in running a honeypot?
- \Rightarrow How would you improve IoTPOT?
- \Rightarrow Others means to achieve the same?

Vetterl, A., & Clayton, R. (2019, November). Honware: A virtual honeypot framework for capturing CPE and IoT zero days. In *Symposium on Electronic Crime Research (eCrime). IEEE.*

- We've seen IoTPOT as a generic example, can we improve on that model?
 - Specialized honeypots can be built for known malware (leaked Mirai sourcecode)
 - But this might not capture attack traffic of unknown derivates (e.g. Yowai/Hakai)
- Malware engineers can easily scan the whole IPv4 Internet to look for vulnerable devices and quickly infect them.
- This means defenders need to scale fast too
 - IoTPOT → Hardcoded answers (and limited sandbox), Firmadyne → Not setup for network traffic, SIPHON→ physical devices
- Using original firmware as a basis for honeypots

Quiz 1


How long does it take to scan the whole IPv4 space?

A. Around 5 minutes
B. Around 60 minutes
C. Around 1 day
D. Around 7 days

- Using original firmware as a honeypot basis
 - Automated firmware extraction with Binwalk
 - Customizing the kernel to allow logging & emulating proprietary hardware
 - Signal interception (signals are a form of inter-process communication (IPC))
 - Module loading disabled
 - NVRAM is not available and thus has to be emulated
 - Network configuration (adding interfaces)
 - Emulation self-check (am I reachable via ping?)

- Not required, but fun:
- Reverse engineering my router's firmware with binwalk
- <u>https://embeddedbits.org/reverse-engineering-router-firmware-with-binwalk/</u>
- Playing with signals
- <u>http://www.it.uu.se/education/course/homepage/os/vt18/module-</u> 2/signals/

- How does this system compare to the alternative (Firmadyne)?
- Out of 8387 available firmwares, 4650 could be successfully extracted (55.4%)
 - Possibly due to having weaker constraints on the size of the extracted image
- From the 4650 extracted firmware images, 1903 responded to ICMP traffic (40.9%). Firmadyne only achieved this for 460 firmware images (15.8%)
 - Likely due to the kernel customizations, and handling of crashes

# Brand	Availal	ole	Extracte	ed	Network 1	each.	22 On Networks	0/28	28	_	_	_	
	(2019-03/201	6-02/Δ)	(honw./firm	n./ Δ)	(honw./firr	$n./\Delta)$	23 Open Wir. 24 OpenWrt	0/1 756/1498	1↓ 742↓	- 714/705	_ 9↑		
1 Actiontec	0/14	14	_				25 pfSense	214/256	42	/14//03	9	0/4/0	
2 Airlink101	0/14	$14\downarrow$ $15\downarrow$	_	_	_	_	26 Polycom	612/644	$42\downarrow$ $32\downarrow$	0/24	24	_	
3 Apple	0/9	13↓ 9↓	_	_	_	_	27 QNAP	8/464	456	0724	∠+ ↓ _		
4 Asus	1/3	$2\downarrow$	1/1	\leftarrow	1/0	1↑	27 QNAF 28 RouterTech	0/12	430 12	—	_	—	
5 AT&T	3/25	$22\downarrow$	0/2	2	-	_	29 Seiki	0/12 0/16	12	—	_	_	
6 AVM	0/132	132	_		_	_		0/16	150	—	_	_	
7 Belkin	123/140	17	49/49	\leftarrow	9/0	9↑	30 Supermicro		•	1966/020	1607	_	
8 Buffalo	97/143	46	6/7	1↓	2/1	1↑	31 Synology	1977/2094	117	1866/239		2/0	
9 CenturyLink	13/31	18	7/4	3	7/0	7∱	32 Tenda	6/244	238	4/3	1↑	2/0	
10 Cerowrt	0/14	14	_	_	_	_ '	33 Tenvis	9/49	40	6/6	\leftarrow	6/4	
1 Cisco	0/61	61	_	_	-	_	34 Thuraya	0/18	18	-	-	-	
12 D-Link	1443/4688	3245	537/498	391	272/115	157↑	35 Tomato	362/2942	2580	362/362	\leftarrow	217/0	
3 Forceware	0/2	$2\downarrow$	_	_	_		36 TP-Link	463/1072	609	171/171	\leftarrow	147/95	
4 Foscam	44/56	12	5/5	\leftarrow	_	_	37 TRENDnet	336/822	486	134/100		87/37	
15 Haxorware	0/7	7	_	_	_	_	38 Ubiquiti	26/51	25	20/19	1↑	11/0	
16 Huawei	13/29	16	0/3	3↓	_	_	39 u-blox	0/16	16	—	_	_	
17 Inmarsat	0/47	47	_	_	_	_	40 Verizon	0/37	37↓	—	-	_	
18 Iridium	0/17	17	_	_	_	_	41 Western Dig.	0/1	1↓	-	_	—	
19 Linksys	32/126	94	26/26	\leftarrow	15/1	14↑	42 ZyXEL	449/1768	1319	103/67	36↑	69/20	
20 MikroTik	4/13	9↓	-	_	-	_	T-4-1	0207/02025	14640	465010000	17204	1002/460	_
21 Netgear	1396/5280	3884	639/629	10↑	384/187	197↑	Total	8387/23035	14648	4650/2920	1730	1903/460	l

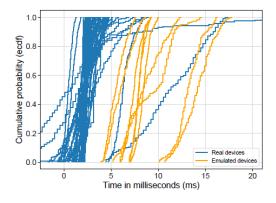
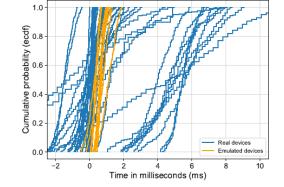
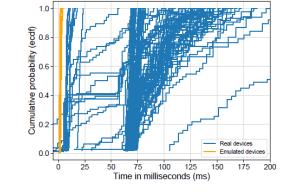
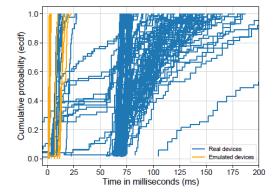

Prot.	Port/Service	Honware	Firmadyne	Δ
TCP	23/telnet	879	149	730↑
TCP	80/http	676	293	383
UDP	67/dhcp	316	160	156
UDP	1900/UPnP	239	128	111↑
UDP	53/various	239	174	65
TCP	3333/dec-notes	222	102	120
TCP	5555/freeciv	203	57	146
TCP	5431/UPnP	177	48	129
UDP	137/netbios	154	82	72
TCP	53/domain	139	73	66
TCP	443/https	107	105	$2\uparrow$
UDP	5353/mdns	102	34	68
UDP	69/tftp	104	26	78
TCP	1900/UPnP	56	60	4
TCP	49152/UPnP	53	62	9

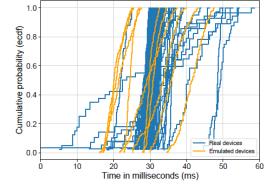
TABLE IICOMPARING HONWARE AND FIRMADYNE: TOP 15 LISTENING SERVICES.

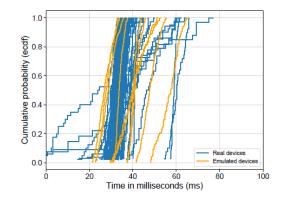


- How does this system compare to the real deal (hardware in the wild)?
- Fingerprinting of honeypots is an ongoing concern




(a) ASUS RT-AC52U FTP server: Time to welcome message


(b) ASUS RT-AC52U FTP server: Time between resource request (carriage return) and login message


(c) Zyxel VMG1312-B10A Telnet server: Time to telnet negotiation characters

(d) Zyxel VMG1312-B10A Telnet server: Time to Login message

(e) D-Link DIR-825 HTTPS server: Time to complete the TLS handshake

(f) D-Link DIR-825 HTTPS server: Time between ClientHello and resource received (web page)

Hosting the honeypots in the cloud can aid attackers in the fingerprinting process

A. TrueB. False

- Real world results: fast
- 1. UPnPHunter took a research team 1 month to reverse engineer, Honware detected the complete attack within 24 hours
- 2. DNS hijack, a previously unknown attack
- 3. UPnPProxy
- 4. Mirai variants, target port 80 (HTTP) instead of 23 (Telnet)
- Detected malware samples were unknown to the wider community (Virustotal)

GET /cgi-

bin/timepro.cgi?tmenu=netconf&smenu=wansetup&act=save& wan=wan1&ifname=eth1&sel=dynamic&wan_type=dynamic&al low_private=on&dns_dynamic_chk=on&userid=&passwd=&mtu .pppoe.eth1=1454&lcp_flag=1&lcp_echo_interval=30&lcp_echo _failure=10&mtu.static.eth1=1500&fdns_dynamic1=185&fdns_ dynamic2=117&fdns_dynamic3=74&fdns_dynamic4=100&sdns _dynamic1=185&sdns_dynamic2=117&sdns_dynamic3=74&sdn s_dynamic4=101 HTTP/1.1

/sbin/iptables -t nat -A PREROUTING -i br0 -d 192.168.0.1 -p udp --dport 53 -j DNAT --to-destination 185.117.74.100

>40 IPs with the same certificate 118.30.28.10 AS41718: China Great Firewall Network Limited Company

- At the beginning we were not able to capture a valid sample as the honeypot needs to be able to simulate the above scenarios. We had to tweak and customize our honeypot quite a few times, then finally in Oct, we got it right and successfully tricked the botnet to send us the sample (we call it BCMUPnP_Hunter).
- <u>https://blog.netlab.360.com/bcmpupnp_hunter-a-100k-botnet-turns-home-</u> routers-to-email-spammers-en/
- Original slides by the authors of the paper:
- <u>https://www.cl.cam.ac.uk/~amv42/papers/vetterl-clayton-honware-virtual-honeypot-framework-ecrime-19-slides.pdf</u>

Conclusion

- Honware uses real services/applications which are shipped with the device
 - In addition to that, the native configuration files are loaded
- Better than existing emulation strategies in all areas
 - Extraction, network reachability, listening services
- Capable of detecting vulnerabilities at scale
 - Rapid emulation cuts the attackers' ability to exploit vulnerabilities for considerable time

Discussion of honeypot frameworks

- 1. What do you think of the proposed frameworks today? Would you change something and why?
- Let's link this back to the lecture of governance and regulation: Should governments only allow the sale of an IoT device, if they can run the firmware on a testbench?

Volg ons

Nolg ons
SIDN.nl
@SIDN
SIDN

Discussion & feedback

Next lecture: **Wed May 27, 10:45-12:30** Topic: IoT edge security systems

