Lecture #7: IoT Device Behavior

Cristian Hesselman, <u>Elmer</u> Lastdrager, Ramin Yazdani, and <u>Etienne</u> Khan

University of Twente | June 3, 2020

Lab assignment

- MUD descriptions: you'll need to generate them yourselves, tools are available
- IoT devices: you'll need to work with the actual hardware, no emulations (unless as an extra)
- Use IoT devices without a browser-like interface, such as light bulbs, audio speakers, doorbells
- Do not use multi-purpose devices like tablets, phones, laptops
- At least 2 IoT devices per group of 3 and at least 3 devices per group of 4

• Etienne Khan available for assistance

Lab assignment (2)

- If you have not yet started, start today!
- Don't overcomplicate recording: a laptop suffices.

Paper summaries

- You must have handed in your two summaries BEFORE this lecture
- You can use the summaries during the oral exam ("open book")
- You <u>cannot</u> complete SSI without submitting 12 paper summaries!

Interactive Lecture

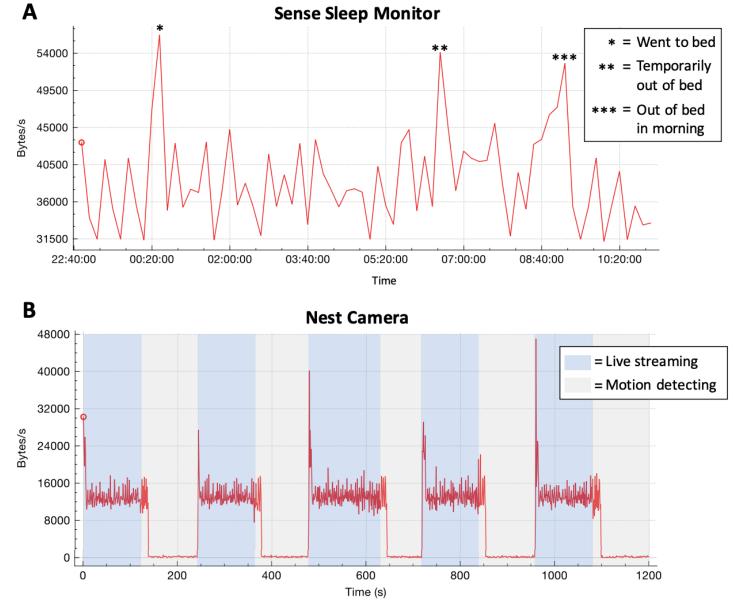
- Goal: enable you to learn from each other and further increase your understanding of the papers (contributes to preparing yourself for the oral exam)
- Format:
 - 1. We'll ask someone to provide **their opinion** of the paper
 - 2. A summary by teachers (put any questions in the chat)
 - 3. Questions: discussion starters and fact questions
 - 4. Discussion (use your mic)
 - 5. We may ask someone specific to start the discussion
- Experimental format resulting from Corona pandemic, please provide feedback!

Today's papers

Are about measuring IoT botnets

- [AuDI] Marchal, S., Miettinen, M., Nguyen, T. D., Sadeghi, A-R., & Asokan, N. (Accepted/In press). AuDI: Towards Autonomous IoT Device-Type Identification using Periodic Communication. IEEE Journal on Selected Areas in Communications
- **[IMC]** J. Ren, D. J. Dubois, D. Choffnes, A. M. Mandalari, R. Kolcun, and H. Haddadi, "Information Exposure from Consumer IoT Devices: A Multidimensional, Network-Informed Measurement Approach", Internet Measurement Conference (IMC2019), Amsterdam, Netherlands, Oct 2019

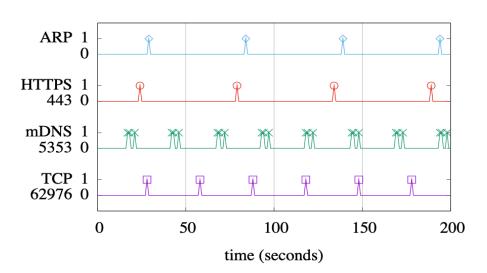
"AUDI: Towards Autonomous IoT Device-Type Identification using Periodic Communication"

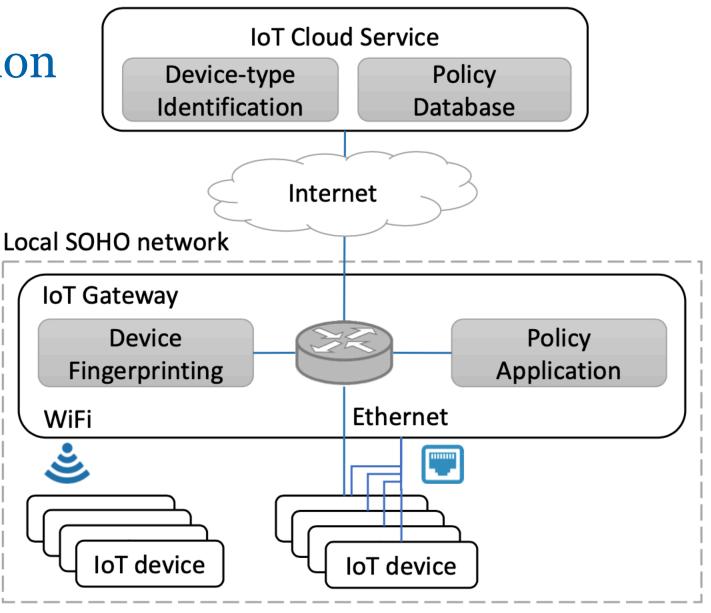


Passive monitoring

Encryption-agnostic

See also:


Noah Apthorpe, Dillon Reisman, Nick Feamster, "**A Smart Home is No Castle: Privacy Vulnerabilities of Encrypted IoT Traffic**", Workshop on Data and Algorithmic Transparency (DAT '16), New York University Law School, November 2016



Device Type identification

- Goal: "quickly, accurately and *autonomously* identifying the type of IoT devices"
- QoS or security policies
- Passive fingerprinting of periodic network traffic
- 98.2% accuracy in tests

How do they do it?

- Periodic background network traffic
- Analyse per flow
- Time series: traffic 1/0 every second
- Compute periods Fourier transform
- Autocorrelation to find periodicity
- Fingerprinting periods

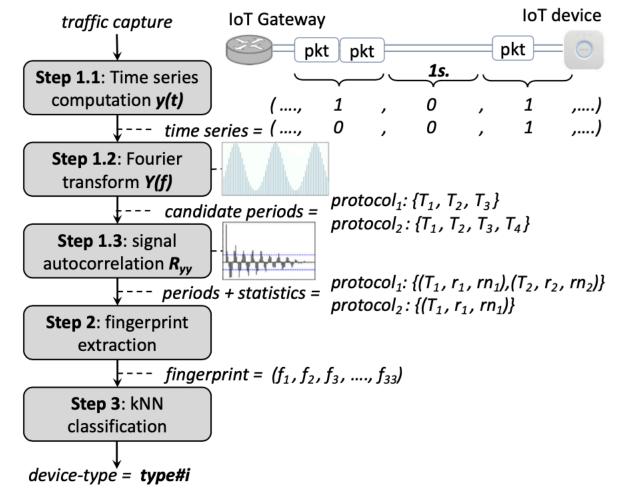


Fig. 2: Overview of device-type identification.

Quiz: countering detection

How can you avoid getting fingerprinted?

- A. Generate a constant stream of traffic
- B. Encrypt the network traffic
- C. Open connections to random hosts
- D. Disable the ICMP finger protocol
- E. You can't

Fingerprints

33 features in 4 categories Manually designed

Category	f	Description	Importance
1		# periodic flows	0.440
	2	# periodic flows (protocol \leq layer 4)	0.465
	3	Mean periods per flow	0.068
periodic	4	SD periods per flow	0.037
flows	5	# flows having only one period	0.429
nows	6	# flows having multiple periods	0.176
	7	# flows with static source port	0.533
	8	Mean frequency source port change	0.310
	9	SD frequency source port change	0.137
noriod	10	# periods inferred in all sub-captures	0.329
period accuracy	11	Mean period inference success	0.037
accuracy	12	SD period inference success	0.022
	13	# periods $\in [5s.; 29s.]$	0.409
period	14	# periods \in [30s.; 59s.]	0.408
duration	15	# periods \in [60s.; 119s.]	0.467
	16	# periods \in [120s.; 600s.]	0.419
	17	$\#$ Mean $(r) \in [0.2; 0.7[$	0.386
	18	$\# Mean(r) \in [0.7; 1[$	0.436
	19	$\#$ Mean $(r) \in [1; 2[$	0.239
	20	# Mean $(r) \in [2; +\infty[$	0.124
	21	$\# SD(r) \in [0; 0.02[$	0.185
	22	$\# SD(r) \in [0.02; 0.1[$	0.151
	23	$\# \operatorname{SD}(r) \in [0.1; +\infty[$	0.185
	24	$\# Mean(rn) \in [0.2; 0.7[$	0.288
period	25	$\# Mean(rn) \in [0.7; 1[$	0.307
stability	26	$\# \operatorname{Mean}(rn) \in [1; 2[$	0.313
	27	# Mean $(rn) \in [2; +\infty[$	0.246
	28	$\# SD(rn) \in [0; 0.02[$	0.217
	29	$\# SD(rn) \in [0.02; 0.1[$	0.217
	30	$\# \operatorname{SD}(rn) \in [0.1; +\infty[$	0.220
	31	# $Mean(rn) - Mean(r) \in [0; 0.02[$	0.408
	32	# $Mean(rn) - Mean(r) \in [0.02; 0.1[$	0.248
	33	# Mean (rn) – Mean $(r) \in [0.1; +\infty[$	0.482

IoT Cloud service

- Fingerprints are sent to IoT Cloud service
- Cloud services uses fingerprints to learn (and find) device types (i.e., step 3)
- Fingerprints per 30 minutes.
- Unsupervised (?) clustering algorithm: autonomously group these fingerprints into clusters and create an abstract label for each cluster

Evaluation

33 devices

Background + activity 6224 fingerprints ID in +- 30 minutes

				Å	ter	L	Stour Un
Device-type	Identifier	Device model	W.I.F.	Ether	Orto I	Back	A. Stou
type#01	ApexisCam	Apexis IP Camera APM-J011	•	•	0	•	•
type#02	CamHi	Cooau Megapixel IP Camera	•	•	0	•	٠
type#03	D-LinkCamDCH935L	D-Link HD IP Camera DCH-935L	•	0	0	•	•
t	D-LinkCamDCS930L	D-Link WiFi Day Camera DCS-930L	•	•	0		0
type#04	D-LinkCamDCS932L	D-Link WiFi Camera DCS-932L	•	•	ο	•	0
	D-LinkDoorSensor	D-Link Door & Window sensor	0	0	•	•	•
	D-LinkSensor	D-Link WiFi Motion sensor DCH-S150	•	0	0	•	•
type#05	D-LinkSiren	D-Link Siren DCH-S220	•	0	ο	•	•
~1	D-LinkSwitch	D-Link Smart plug DSP-W215	•	0	0	•	•
	D-LinkWaterSensor	D-Link Water sensor DCH-S160	•	0	0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 •	•	
	EdimaxCamIC3115	Edimax IC-3115W Smart HD WiFi Network Camera	Network Camera • • Network Camera • •	•	0	•	•
type#06	EdimaxCamIC3115(2)	Edimax IC-3115W Smart HD WiFi Network Camera	•	•	0	•	•
	EdimaxPlug1101W	Edimax SP-1101W Smart Plug Switch	•	0	0		•
type#07	EdimaxPlug2101W	Edimax SP-2101W Smart Plug Switch	•	0	0		
type#08	EdnetCam	Ednet Wireless indoor IP camera Cube	•	•	0	•	•
type#09	EdnetGateway	Ednet.living Starter kit power Gateway	•	0	•	•	
type#10	HomeMaticPlug	Homematic pluggable switch HMIP-PS	0	0	•	•	
type#11	Lightify	Osram Lightify Gateway	•	0	•	•	
type#12	SmcRouter	SMC router SMCWBR14S-N4 EU	•	•	0	•	
	TP-LinkPlugHS100	TP-Link WiFi Smart plug HS100	•	0	0	•	-
type#13	TP-LinkPlugHS110	TP-Link WiFi Smart plug HS110	•	0	0	•	
type#14	UbnTAirRouter	Ubnt airRouter HP	•	•	0	•	_
type#15	WansviewCam	Wansview 720p HD Wireless IP Camera K2	•	0	0	•	
type#16	WeMoLink	WeMo Link Lighting Bridge model F7C031vf	•	0	•	•	
	WeMoInsightSwitch	WeMo Insight Switch model F7C029de	•	0	0		_
type#17	WeMoSwitch	WeMo Switch model F7C027de	•	0	0	•	
type#18	HueSwitch	Philips Hue Light Switch PTM 215Z	0	0	•	•	_
type#19	AmazonEcho	Amazon Echo	•	0	0	0	
type#20	AmazonEchoDot	Amazon Echo Dot	•	0	0		
type#20	GoogleHome	Google Home	•	o	0	•	- c
type#22	Netatmo	Netatmo weather station with wind gauge	•	o	•	•	6
	iKettle2	Smarter iKettle 2.0 water kettle SMK20-EU	•	0	0	•	_
type#23	SmarterCoffee	Smarter SmarterCoffee coffee machine SMC10-EU		0	0		

Quiz: attack!

Devices can spoof their fingerprint. How do the authors counter this?

- A. The gateway will detect this thanks to the ReliefF feature selection
- B. They propose to add active scanning as future work
- C. Add the device's MAC address as a feature
- D. They assume that the device is not infected during the first 30 minutes

Discussion

- Privacy implications?
- Sharing policies with central cloud service
- Fingerprinting attack traffic?

Information Exposure From Consumer IoT Devices

A Multidimensional, Network-Informed Measurement Approach

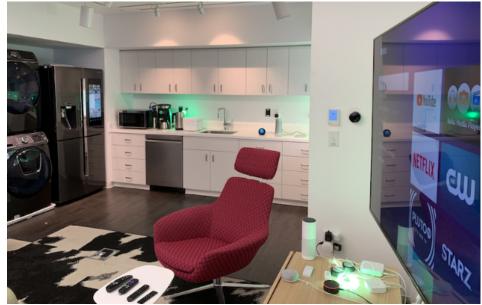
Motivation

IoT devices are the new normal (+7.000.000.000 devices around us)

- But don't just take my word for it, take Bosch's
 - o <u>https://www.youtube.com/watch?v=v2kV6pgJxuo</u>

But time and time again we have seen that:

- IoT cameras might record you in unexpected scenarios
- IoT assistants might activate/record unexpectedly
- IoT TVs show you ads in your launcher/menu
 - <u>https://www.thedrum.com/news/2019/09/10/the-first-thing-you-see-lg-smart-tv-now-ad</u>


Expectations

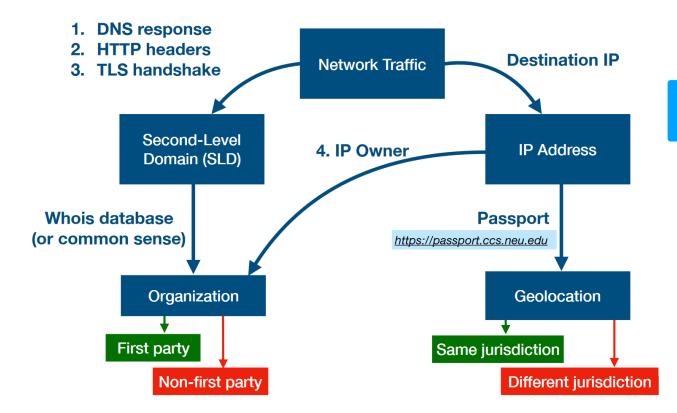
- My IoT device only connects to the server of the manufacturer
- My IoT device only transmits its data in an encrypted fashion
- My IoT device only transmits relevant data to the manufacturer
- My IoT device only does its IoT task when I ask it to do so
- My IoT device purchased in my region, won't connect to any other jurisdiction
- Quick question: Do you have any additional expectations?

Data Collection Methodology

- Well to see if our expectations hold true, lets put them to the test
- 81 different IoT devices in two different jurisdictions: UK and US
- All traffic is captured at a central server before egressing into the Internet
- But how do we test? As we've seen before, there is no standard IoT testbed.
- How do we test smart assistants?

Data Collection Methodology

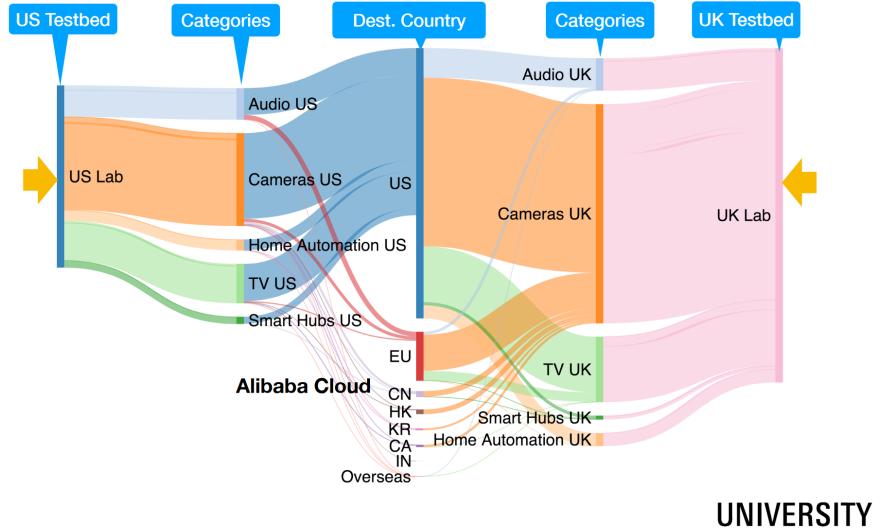
34,586 experiments (92.6% automated)


- Controlled interactions
 - Manual (repeated 3 times)
 - Automated (repeated 30 times)

Activity	Description				
Power	power on/off the device				
Voice	voice commands for speakers				
Video	record/watch video				
On/Off	turn on/off bulbs/plugs				
Motion	move in front of device				
Others	change volume, browse menu				

- Text-to-speech to smart assistants (Alexa/Google/Cortana/Bixby)
- Monkey instrumented control from Android companion apps

Destination Analysis


• Number of devices contacting non-first party organizations

High reliance on cloud						
and CDN providers		Organization	US 46	UK 35	US Common 24	UK Common 24
		Amazon	31	24	16	17
		Google	14	9	10	8
		Akamai	10	6	6	5
Nearly all TVs		Microsoft	6	4	1	1
contact Netflix w/o it		Netflix	4	2	3	2
being logged in or used		Kingsoft	3	3	1	1
used		21 Vianet	3	3	1	1
		Alibaba	3	4	2	2
		Beijing Huaxiay	3	3	1	1
Chinese cloud		AT&T	2	0	1	1
providers						

Regional differences

Destination Analysis

Encryption Analysis

- Remove everything which is not detected by Wireshark as TLS or QUIC
- Get a baseline entropy for HTTP (0.25) and HTTPS (TLS) (0.85) traffic
- But depending on the content (IMC 2019 websites) you might get different results:
 - HTTP (0.55, max = 0.62) / fernet (0.73, min = 0
- Suddenly the picture isn't so clear anymore?
- Open discussion: What do you think the unidentified traffic might be?
- Open discussion: Shouldn't MITM analysis be deployed as well?

E	D	TIC	I IIZ	LIC o	UVO	VPN			
Enc	Range	05	UK	US∩	UK∩	US→UK	UK→US	US∩	UK∩
	>75	0	0	0	0	0	0	0	0
v	50-75	1	1	0	0	2	0	1	0
^	25-50	4	1	1	1	3	2	0	1
	<25	41	31	24	24	41	31	24	24
	>75	7	7	5	5	4	5	3	3
1	50-75	5	7	4	6	7	8	5	7
•	25-50	10	5	5	4	12	5	7	5
	<25	24	14	11	10	23	15	10	10
	>75	16	10	8	7	17	11	8	7
2	50-75	11	6	5	5	11	5	5	4
•	25-50	11	7	6	5	13	10	8	9
	<25	8	10	6	8	5	7	4	5

Table 5: Number of devices by encryption percentage in quartile groups across lab and network.



Quiz: Which of these items was <u>not</u> sent unencrypted?

A. MAC address (incl. timestamp)
B. Firmware
C. On/Off signals
D. Video
E. Voice data

Unexpected Behavior

- Other notable cases of activities detected when idle
 - Cameras reporting motion in absence of movement
 - Devices spontaneously restarting or reconnecting

Conclusion

- First step towards more large-scale IoT measurements:
 - 81 devices, 2 countries, 34K experiments
- Main results:
 - 57% (50%) of destinations of the US (UK) devices are not first-party
 - 56% (84%) of the US (UK) devices have at least one destination abroad
 - 89% (86%) of the US (UK) devices are vulnerable to at least one activity inference

BBC

Consumer

- Activity inference can be used to identify *unexpected* activities
- Impact:

- Working with manufacturers to understand information exposure -
- Testbed/analysis framework and data are publicly available

https://moniotrlab.ccis.neu.edu/imc19/

Discussion (if time permits)

- We heard one opinion at the beginning, maybe some more?
- How would you improve this study?
- Can we say anything about the long-term feasibility of projects like these?

Volg ons

Nolg ons
SIDN.nl
@SIDN
SIDN

Other Questions or Feedback?

Next lecture: **Wed June 10, 10:45-12:30** Topic: IoT Network Security

