Lecture #5: IoT Honeypots

Cristian Hesselman, <u>Elmer</u> Lastdrager, Ramin Yazdani, and <u>Etienne</u> Khan

University of Twente | May 18, 2021

Interactive lectures

• Objective: enable you to learn from each other and further increase your understanding of the papers, contributes to preparing yourself for the oral exam

- Interactive format
 - Teachers summarize two papers per lecture
 - Multiple-choice questions (not graded) and discussion
 - We ask at least one of you to share their thoughts **verbally** on each paper (pros, cons, surprises)
 - Enables you to learn from each other, so mandatory to participate
- A 7th "re-sit" lecture in case you miss a lecture (optional for everybody else), same format

Paper summaries

- You must have handed in your two summaries before 7AM on the day of the lecture
- Each summary can be at most 250 words, at most 1 single-sided A4 page
- You can add figures, and graphs from the paper or add your own if you like (e.g., concept maps)
- You can use the summaries during the oral exam
- Submit through CANVAS
- You **cannot** complete SSI without submitting 12 paper summaries!

Today's objective

• After this lecture, you will be able to explain what is the purpose of using IoT honeypots

• You will be able to discuss different kinds of implementations for IoT honeypots and argue why they are designed in that way.

• Contributes to SSI learning goal #1: "Understand IoT concepts and applications, security threats, technical solutions, and a few relevant standardization efforts in the IETF"

Today's papers

Are about measuring IoT botnets

- **[IoTPOT**] Yin Minn Pa Pa, Shogo Suzuki, Katsunari Yoshioka, Tsutomu Matsumoto, Takahiro Kasama, Christian Rossow. "IoTPOT: Analysing the Rise of IoT Compromises". 9th USENIX Workshop on Offensive Technologies (co-located with USENIX Sec '15), WOOT '15, Washington, DC, https://christian-rossow.de/publications/iotpot-woot2015.pdf
- [Honware] Vetterl, Alexander, and Richard Clayton. "Honware: A virtual honeypot framework for capturing CPE and IoT zero days." Symposium on Electronic Crime Research (eCrime). IEEE. 2019. https://www.cl.cam.ac.uk/~amv42/papers/vetterl-clayton-honware-virtual-honeypot-framework-ecrime-19.pdf

"IoTPOT: Analysing the Rise of IoT Compromises", 9th USENIX Workshop on Offensive Technologies (WOOT), 2015

Darknet monitoring

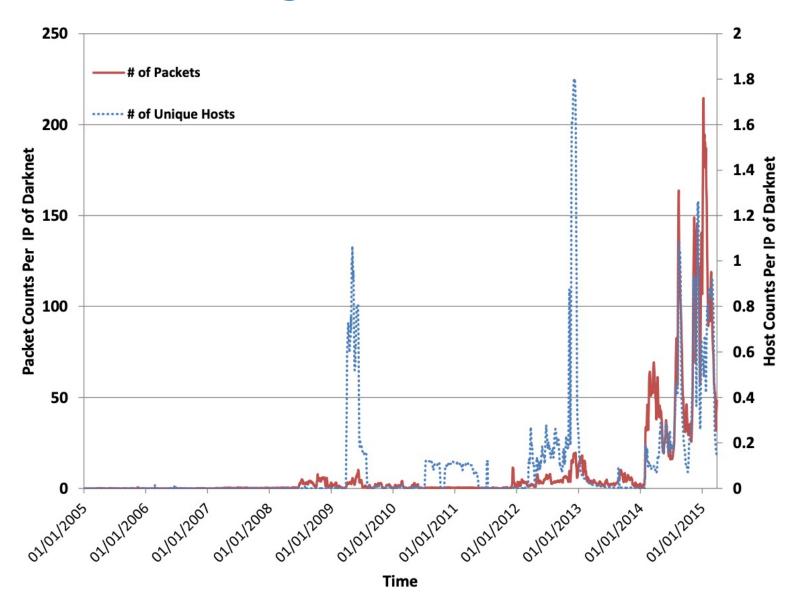
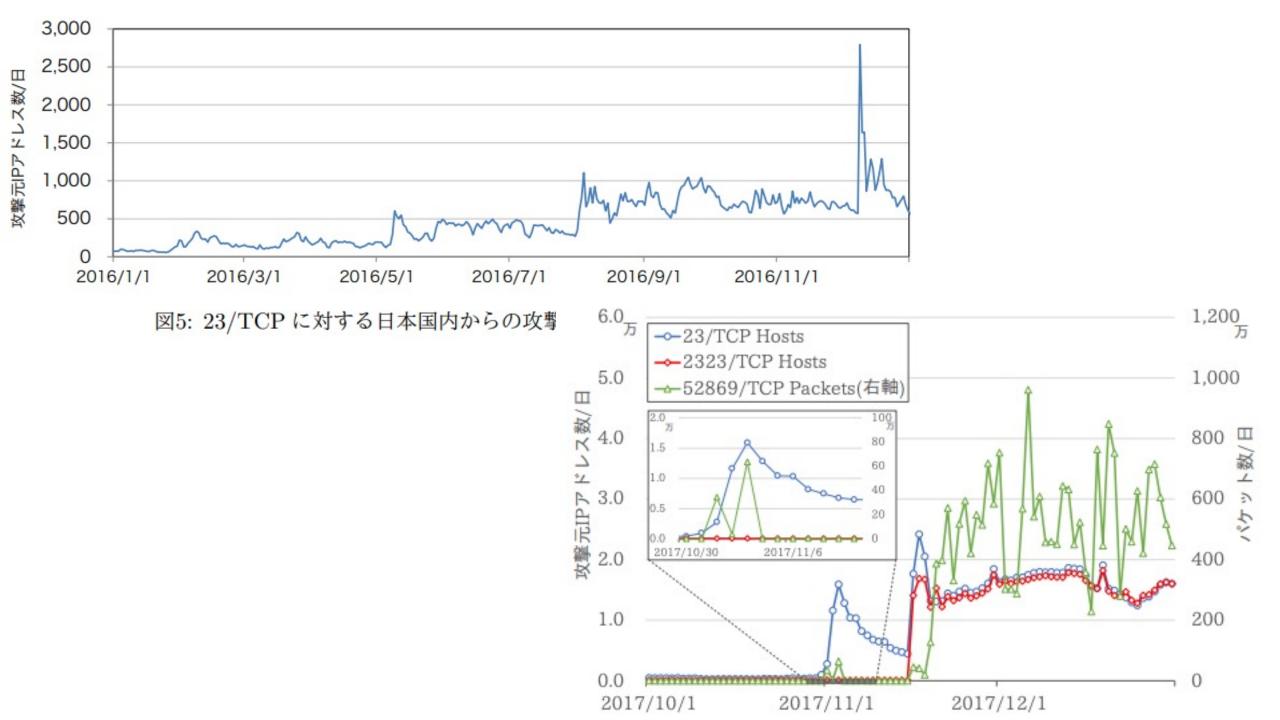

270.000 IP's
Connect back 23/80 TCP
& collect banners.

Table 1 - Scanning hosts and device models


Davias Tyres	Host	Device Model
Device Type	Count	Count
DVR	1,509	19
IP Camera	523	16
Wireless Router	118	45
Customer Premises Equipment	65	1
Industrial Video Server	22	1
TV Receiver	19	2
Heat Pump	10	1
EMU System	9	1
Digital Video Scalar	5	2
Router	4	3

Darknet monitoring (2)

Quiz

Why is a **darknet** useful for IoT malware research?

A: Malware runs better, because it's from the dark side

B: No legitimate traffic

C: No legal problems because a darknet is not managed by any company

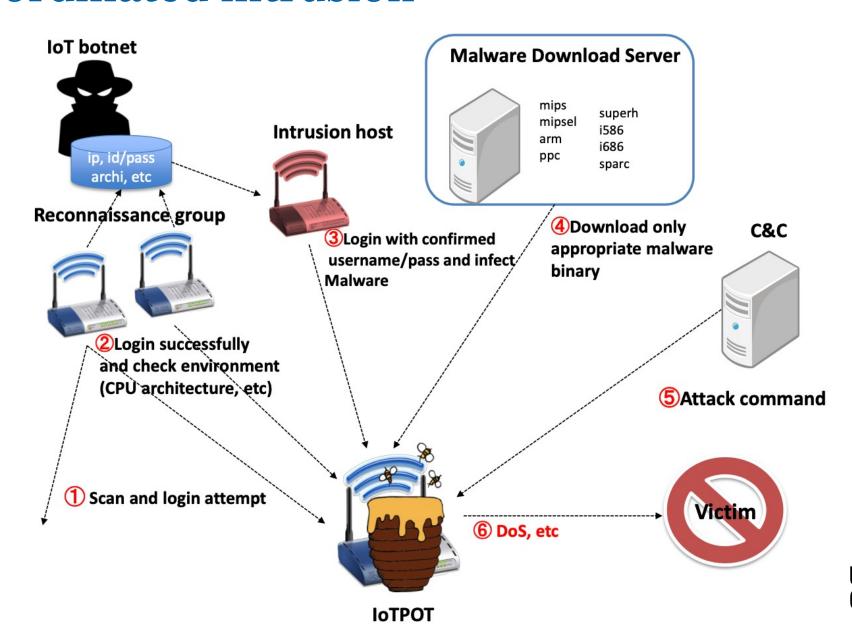
D: It has residual trust from previous use

IoT POT

Running on 165 IP addresses

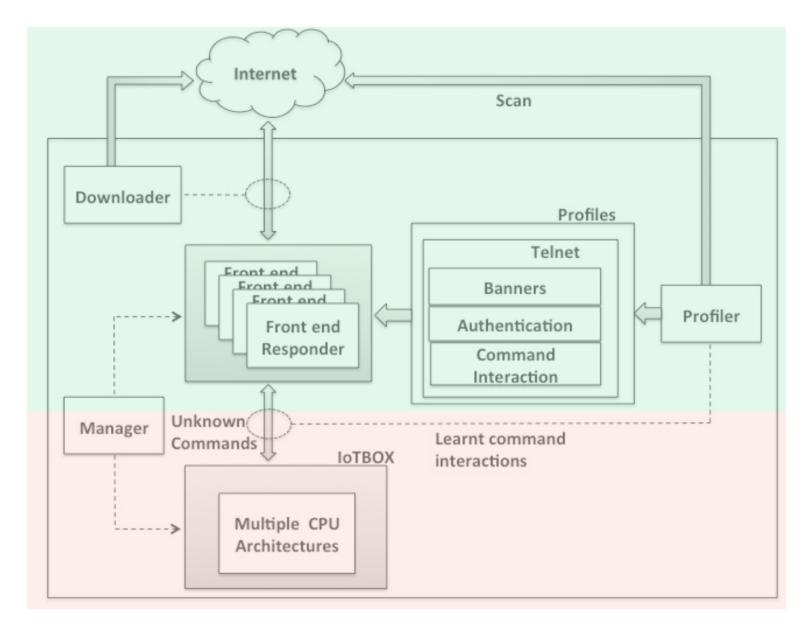
5 weeks running time

Telnet attack stages:


(1) Intrusion; (2) Infection; (3) Monetization. Remember Mirai?

Credentials in Fixed/Random order (1)

6 patterns of commands (2) distinguished



'Coordinated intrusion'

IoTPOT & IoTBOX

Quiz

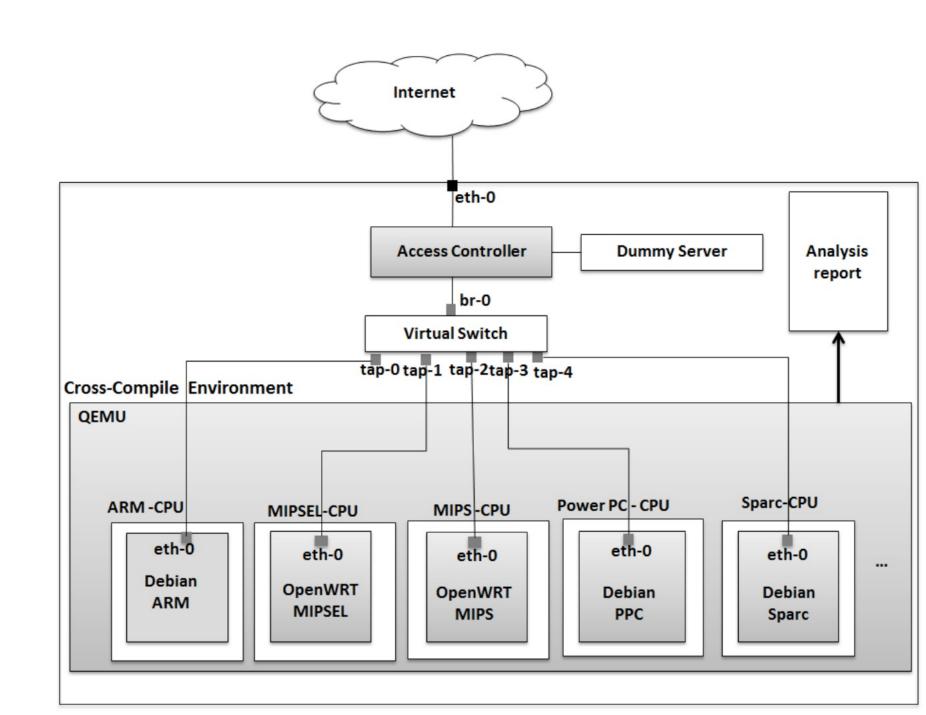
What would an operator of an IoTPOT honeypot need to do to support Hajime?

A: Add support for MIPS CPU architecture

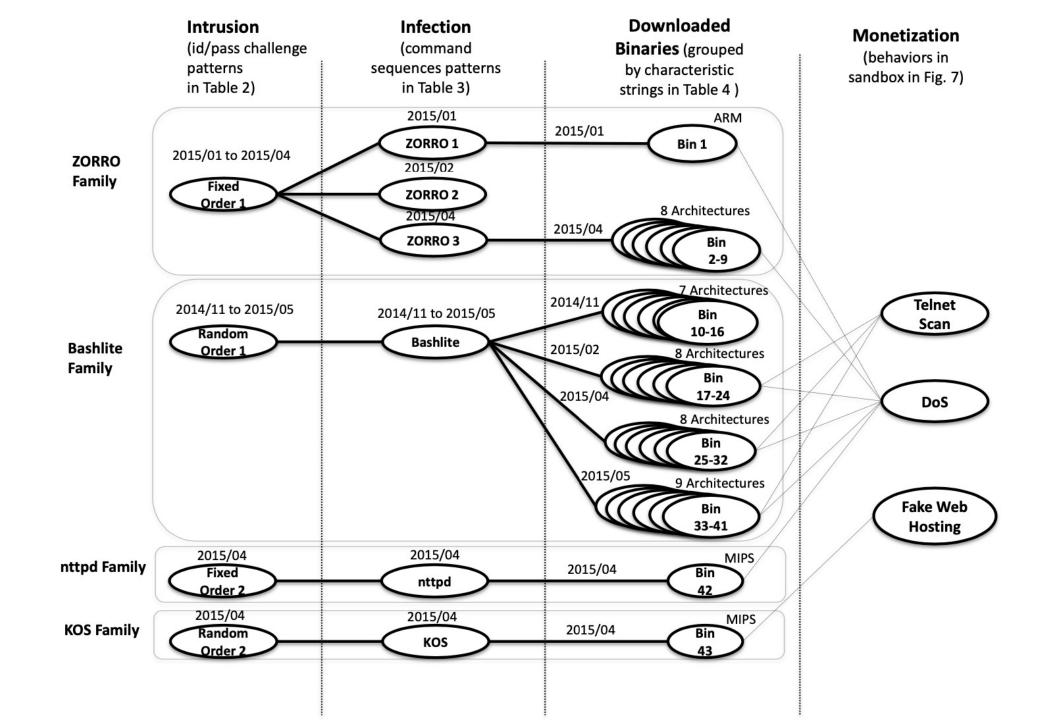
B: Track DHT (P2P) communications

C: Expose many vulnerabilities

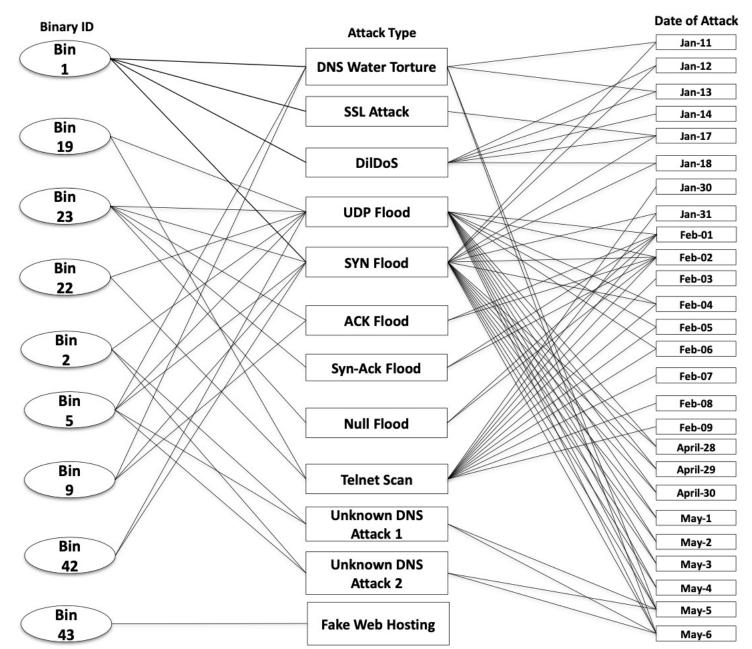
D: Run the honeypot in different subnets



IoTBOX


Sandbox with 8 CPU architectures

Limit outgoing to DNS/HTTP 5ppm


Telnet to Dummy server

Results

Results

Question

What is —in your opinion- the most important next-step?

A: More CPU architectures

B: Passthrough and monitor C&C traffic

C: Standardized botnet profiles for sharing between organizations

D: Running on real (IoT) hardware

Key takeaways

IoT world heterogeneous => honeypots more complex

High-interaction needed to get useful results

Require many (!) IP addresses to catch scans

Discussion

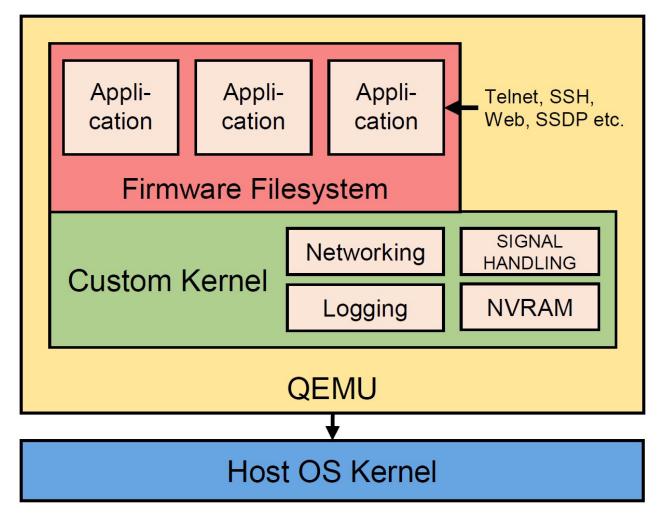
- \Rightarrow What is IoT about IoTPOT?
- ⇒ Ethical considerations in running a honeypot?
- \Rightarrow How would you improve IoTPOT?
- \Rightarrow Other means to achieve the same?

Vetterl, A., & Clayton, R. (2019, November). Honware: A virtual honeypot framework for capturing CPE and IoT zero days. In *Symposium on Electronic Crime Research (eCrime)*. *IEEE*.

- We've seen IoTPOT as a generic example, can we improve on that model?
 - Specialized honeypots can be built for known malware (leaked Mirai sourcecode)
 - But this might not capture attack traffic of unknown derivates (e.g. Yowai/Hakai)
- Malware engineers can easily scan the whole IPv4 Internet to look for vulnerable devices and quickly infect them.
- This means defenders need to scale fast too
 - IoTPOT → Hardcoded answers (and limited sandbox), Firmadyne → Not setup for network traffic, SIPHON→ physical devices
- Using original firmware as a basis for honeypots

Quiz 1

How long does it take to scan the whole IPv4 space?


- A. Around 5 minutes
- B. Around 60 minutes
 - c. Around 1 day
 - D. Around 7 days

- Using original firmware as a honeypot basis
 - Automated firmware extraction with Binwalk
 - Customizing the kernel to allow logging & emulating proprietary hardware
 - Signal interception (signals are a form of inter-process communication (IPC))
 - Module loading disabled
 - NVRAM is not available and thus has to be emulated
 - Network configuration (adding interfaces)
 - Emulation self-check (am I reachable via ping?)

Zero Days

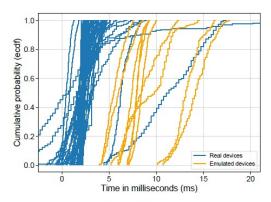
- Not required, but fun:
- Reverse engineering my router's firmware with binwalk
- https://embeddedbits.org/reverse-engineering-router-firmware-with-binwalk/
- Playing with signals
- http://www.it.uu.se/education/course/homepage/os/vt18/module-2/signals/

- How does this system compare to the alternative (Firmadyne)?
- Out of 8387 available firmwares, 4650 could be successfully extracted (55.4%)
 - Possibly due to having weaker constraints on the size of the extracted image
- From the 4650 extracted firmware images, 1903 responded to ICMP traffic (40.9%). Firmadyne only achieved this for 460 firmware images (15.8%)
 - Likely due to the kernel customizations, and handling of crashes

# Brand	Available (2019-03/2016-02/ Δ)		Extracted		Network reach.	
	(2019-03/201	$(6-02/\Delta)$	(honw./firm./ Δ)		(honw./firm./ Δ)	
1 Actiontec	0/14	14↓	_	_	_	_
2 Airlink101	0/15	15↓	_	-	-	-
3 Apple	0/9	91	_		_	_
4 Asus	1/3	2	1/1	\leftarrow	1/0	1
5 AT&T	3/25	22↓	0/2	2	_	_
6 AVM	0/132	132↓	_	_	_	_
7 Belkin	123/140	17↓	49/49	\leftarrow	9/0	91
8 Buffalo	97/143	46↓	6/7	1↓	2/1	1
9 CenturyLink	13/31	18↓	7/4	3	7/0	7
10 Cerowrt	0/14	14↓	_	_	_	_
11 Cisco	0/61	61↓	_	_	_	_
12 D-Link	1443/4688	3245↓	537/498	39	272/115	157
13 Forceware	0/2	2↓	_	_	_	_
14 Foscam	44/56	12↓	5/5	\leftarrow	_	_
15 Haxorware	0/7	7↓	_	_	-	-
16 Huawei	13/29	16↓	0/3	3↓	-	
17 Inmarsat	0/47	47↓	_	_	_	_
18 Iridium	0/17	17↓	_		_	_
19 Linksys	32/126	94↓	26/26	\leftarrow	15/1	14
20 MikroTik	4/13	91	_	_	_	_
21 Netgear	1396/5280	3884↓	639/629	10↑	384/187	197

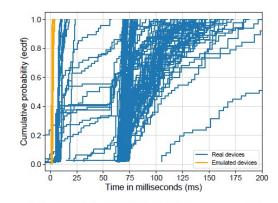
22 On Networks	0/28	28↓	_	-	_	_
23 Open Wir.	0/1	1	_	_	_	_
24 OpenWrt	756/1498	742	714/705	91	674/0	674
25 pfSense	214/256	42	_	_	_	_
26 Polycom	612/644	32	0/24	24↓	_	_
27 QNAP	8/464	456	_	-	_	_
28 RouterTech	0/12	12	_	_	_	_
29 Seiki	0/16	16	_	_	_	-
30 Supermicro	0/150	150	_	_	_	_
31 Synology	1977/2094	117	1866/239	1627	_	_
32 Tenda	6/244	238	4/3	1	2/0	2
33 Tenvis	9/49	40	6/6	\leftarrow	6/4	2
34 Thuraya	0/18	18	_	_	_	-
35 Tomato	362/2942	2580	362/362	\leftarrow	217/0	217
36 TP-Link	463/1072	609	171/171	\leftarrow	147/95	52
37 TRENDnet	336/822	486	134/100	34	87/37	50
38 Ubiquiti	26/51	25↓	20/19	1	11/0	11
39 u-blox	0/16	16↓	_	-	_	_
40 Verizon	0/37	37↓	_	_	_	-
41 Western Dig.	0/1	1↓	_	_	_	-
42 ZyXEL	449/1768	1319↓	103/67	36	69/20	49↑
Total	8387/23035	14648	4650/2920	1730	1903/460	1443↑

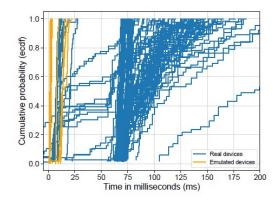
TABLE II
COMPARING HONWARE AND FIRMADYNE: TOP 15 LISTENING SERVICES.

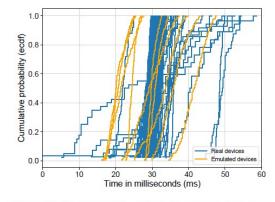

Prot.	Port/Service	Honware	Firmadyne	Δ
TCP	23/telnet	879	149	730↑
TCP	80/http	676	293	383
UDP	67/dhcp	316	160	156
UDP	1900/UPnP	239	128	111
UDP	53/various	239	174	65
TCP	3333/dec-notes	222	102	120
TCP	5555/freeciv	203	57	146
TCP	5431/UPnP	177	48	129
UDP	137/netbios	154	82	72
TCP	53/domain	139	73	66
TCP	443/https	107	105	2
UDP	5353/mdns	102	34	68
UDP	69/tftp	104	26	78
TCP	1900/UPnP	56	60	4
TCP	49152/UPnP	53	62	91

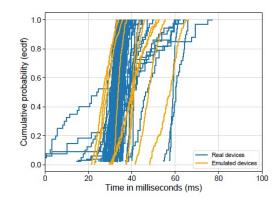


- How does this system compare to the real deal (hardware in the wild)?
- Fingerprinting of honeypots is an ongoing concern




(a) ASUS RT-AC52U FTP server: Time to welcome message


(b) ASUS RT-AC52U FTP server: Time between resource request (carriage return) and login message


(c) Zyxel VMG1312-B10A Telnet server: Time to telnet negotiation characters

(d) Zyxel VMG1312-B10A Telnet server: Time to Login message

(e) D-Link DIR-825 HTTPS server: Time to complete the TLS handshake

(f) D-Link DIR-825 HTTPS server: Time between ClientHello and resource received (web page)

Quiz 2

Hosting the honeypots in the cloud can aid attackers in the fingerprinting process

- A. True
- B. False

- Real world results: fast
- 1. UPnPHunter took a research team 1 month to reverse engineer, Honware detected the complete attack within 24 hours
- 2. DNS hijack, a previously unknown attack
- 3. UPnPProxy
- 4. Mirai variants, target port 80 (HTTP) instead of 23 (Telnet)
- Detected malware samples were unknown to the wider community (Virustotal)

GET /cgi-

bin/timepro.cgi?tmenu=netconf&smenu=wansetup&act=save&wan=wan1&ifname=eth1&sel=dynamic&wan_type=dynamic&allow_private=on&dns_dynamic_chk=on&userid=&passwd=&mtu.pppoe.eth1=1454&lcp_flag=1&lcp_echo_interval=30&lcp_echo_failure=10&mtu.static.eth1=1500&fdns_dynamic1=185&fdns_dynamic2=117&fdns_dynamic3=74&fdns_dynamic4=100&sdns_dynamic1=185&sdns_dynamic3=74&sdns_dynamic3=74&sdns_dynamic3=74&sdns_dynamic4=101 HTTP/1.1

/sbin/iptables -t nat -A PREROUTING -i br0 -d 192.168.0.1 -p udp --dport 53 -j DNAT --to-destination 185.117.74.100

>40 IPs with the same certificate

118.30.28.10 AS41718: China Great Firewall Network Limited Company

- At the beginning we were not able to capture a valid sample as the honeypot needs to be able to simulate the above scenarios. We had to tweak and customize our honeypot quite a few times, then finally in Oct, we got it right and successfully tricked the botnet to send us the sample (we call it BCMUPnP_Hunter).
- https://blog.netlab.360.com/bcmpupnp_hunter-a-100k-botnet-turns-home-routers-to-email-spammers-en/
- Original slides by the authors of the paper:
- https://www.cl.cam.ac.uk/~amv42/papers/vetterl-clayton-honware-virtual-honeypot-framework-ecrime-19-slides.pdf

Conclusion

- Honware uses real services/applications which are shipped with the device
 - In addition to that, the native configuration files are loaded
- Better than existing emulation strategies in all areas
 - Extraction, network reachability, listening services
- Capable of detecting vulnerabilities at scale
 - Rapid emulation cuts the attackers' ability to exploit vulnerabilities for considerable time

Entire lecture: discussion of honeypot frameworks

- 1. What do you think of the proposed frameworks today? Would you change something and why?
- 2. Let's link this back to the lecture of governance and regulation: Should governments only allow the sale of an IoT device, if they can run the firmware on a testbench?
- 3. Can you think of legal implications of running IoT honeypots?

Lecture feedback

1. To what extent do you think you can explain the purpose of IoT honeypots? $(A = \bigcirc, B = \bigcirc, C = \bigcirc)$

2. To what extent do you think you can discuss IoT honeypots design choices? $(A = \bigcirc, B = \bigcirc, C = \bigcirc)$

3. Open question: what are your main lesson learned of the papers and this lecture?

Volg ons

- .nl SIDN.nl
- © @SIDN
- in SIDN

Discussion & feedback

Next lecture: **Tue May 25, 15:45-17:30**

Topic: guest lecture Cisco Systems

