

Onboarding Securing the Internet of Things

Eliot Lear Principal Engineer 25 May 2021

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Confidentia

The nice thing about Things is that there are so many of them

Let's talk about an oven

For OT to be secure, IT has to be secure

© 2021 Cisco and/or its

What A House Might Have

The nice thing about definitions of Internet of Things is that there are so many of them

Today's definition of IoT

A device with a CPU, some memory, and a transceiver that impacts detects or effects some observable physical activity beyond itself.

Let's establish some basic questions

What is this thing?

Who is responsible for it?

What access does it need?

Is it doing what it should be doing?

• What is the device's identity? Does this particular thing belong on the network?

• What type of thing is it?

•

- If something breaks, who should be called?
- With which devices should it communicate?

- With which devices is it actually communicating?
- Is it behaving as designed?

Let's establish some basic questions

What is this thing?

- What is the device's identity? Does this particular thing belong on the network?
- What type of thing is it?

The nice thing about connection technologies is that there are so many of them

Why is IoT different?

III Swis	scom	4G	09:3	37			* 🔳
Enter the password for "UPC Wi-Free"							
Cancel Enter Password Join							
User	name						
Pass	word						
Mode	e				Au	itoma	tic >
av	NE	e r	t	vι	J I	i c	a a
			ų	<u></u>			
а	S	d	fg	h	j	k	1
↔	z	x	c v	b	n	m	\bigotimes
					-		
123			spac	e		N	ext

Basic Requirement for Onboarding: Trust

Session ID

"Can that network prove to me that I should join it?"

"Is that thing supposed to join **my** network?"

The Easy Version of Trust: a wire!

Threat model assumptions:

- Physical security
- Supply chain security

What's there now?

- The IoT Device
- AAA / policy server
- Radius and EAP control channels
- Wireless AP or switch
- An inventory control system
- End goal: <u>steady state with</u>
 <u>EAP</u>

Generic Onboarding Flow

Wifi Alliance DPP Architecture

Bootstrap Information

InformationMAC
AddressDPP:I:SN=4774LH2b4044;M:010203040506;K:MDkwEwYHKoZlzj0CAQYIKoZlzj0DAQcDlg
ADURzxmttZoIRIPWGoQMV00XHWCAQIhXr
uVWOz0NjlkIA=;;

PublicKeyInfo

DPP/TEAP architecture (for the future)

DPP Advantages and Disadvantages

Advantages

One step provisioning with an industry standard QR code

Can work with or without Internet connectivity

Ownership transfers are a matter of resetting the device and reusing the QR code

No PKI required

Disadvantages

Some chip set limitations in phones and tablets to process L2 packets

Still one step, not zero step provision (but this can be further developed)

No native anti-counterfeit capabilities

Primarily developed for wireless technologies

Pre-Provisioned/SIM/e-SIM Onboarding Flow

Bootstrapping Remote Key Infrastructure (BRSKI): It centers around a voucher (RFC 8366)

Bootstrapping Remote Key Infrastructure

BRSKI Advantages and Disadvantages

Advantages

Can be zero step provisioning

Has basic anti-counterfeiting measures

Leverages existing enterprise infrastructure

Disadvantages

Requires a manufacturer service and Internet accessibility

Ownership transfer required

Requires certificate infrastructure

Needs more work to support wireless

FDO delivers Binding at End of the Supply Chain

FDO Advantages and Disadvantages

Advantages

Can be zero step provisioning

Has basic anti-counterfeiting measures

Leverages existing enterprise infrastructure

Creates late binding for SKU management

Disadvantages

Requires a manufacturer-referenced rendezvous service

Ownership transfer required

Doesn't address network-layer onboarding

Let's establish some basic questions

•

Who is responsible for it?

If something breaks, who should be called?

Let's establish some basic questions

What access does it need?

• With which devices should it communicate?

A Common Threat: Printers

Study cites multi-function printers as some of the most dangerous members of the IoT family

What Sort of Access Do These Printers Require?

From	То	Protocol	Source Port	Destination Port(s)
Printer	xmpp009.hpeprint.com	ТСР		80, 443, 5222,5223
Printer	DNS Server	UDP		53
Printer	chat.hpeprint.com	TCP		80,443
Printer	224.0.0.251/32	UDP		5353
Printer	220.0.0.252/32	UDP		5355
Printer	h10141.www1.hp.com	TCP		80
Printer	Local Networks	UDP	5353	
Printer	Local Networks	TCP	80	

What's the scope of the problem?

75

cisco.

The nice thing about the number of types of things is that there are so many of them

Learned and Declared Models

	What is it?	Benefits	Drawbacks
Learned	Cisco-provided Expertise + your deployment knowledge	 Required for "brownfield" deployments for years to come No ecosystem requirements 	 Requires relearning from time to time Can be compute intensive
Declared	Manufacturer- provided expertise plus your deployment knowledge	 Authoritative source of vendor information Combines policy and classification 	 Ecosystem must adopt these approaches

Good news! Use both!

Declared Approach: Assumptions and Assertions

Assumptions	Assertions
A Thing has a single use or a small number of uses.	Because a Thing has a single or a small number of intended uses, all other uses must be unintended.
Things are tightly constrained. Very little CPU, memory, and battery.	Any intended use can be clearly identified.
Network administrators are the ultimate arbiters of how their networks will be used	Manufacturers are in a generally good position to provide guidance to administrators.
Even those Things that can protect themselves today may not be able to do so tomorrow	A mechanism is needed to protect devices that may have vulnerabilities.

Translating intent into config

Introducing Manufacturer Usage Descriptions (MUD)

A URL: https://manufacturer.example.com/mydevice.json	The MUD Manager:
A MUD File: "ace":[{ "name": "cl0-todev", "matches":{ "ietf-mud:mud":{ "my-controller":[null }}; "actions":{ "forwarding": "accept" }}] 	The MUD File Server:

Expressing Manufacturer Usage Descriptions

What Classes of Endpoints MUD provides access to

Expressing Manufacturer Usage Descriptions

Results: Micro-segmentation of that printer

- Visibility of what's on the network
- Access limited to devices based on manufacturer recommendations
- Policy choices easily identified by MUD file
- Hacked devices can't probe for holes
- An additional layer of security
 - BUT- manufacturers should still always secure their devices

Let's make a MUD file and see what that means

Please enter host and model the intended MUD-URL for this device:

https:// lighting.molex.com / (model name here->) lightcontroller

Please provide a URL to documentation about this device:

https://molex.com

Please enter a short description for this device:

Molex Luminaire

© 202

How will this device communicate on the network?

	Type of access	Allow?
	Internet communication Select this type to enter domain names of services that you want this device to access.	
	Access to controllers specific to this device (no need to name a class). This is "my-controller".	
	Controller access Access to classes of devices that are known to be controllers. Use this when you want different types of devices to access the same controller.	8
	Local communication Access to/from any local host for specific services (like COAP or HTTP)	0
	Devices to named manufacturers Access to of devices that are identified by the domain names in their MUD URLs	0
	Access to devices to/from the same manufacturer based on the domain name in the MUD URL.	
	This device speaks IPv4 •	
	Create rules below	
	Controllers (Enter a URI for the class)	
	https://molex.com/lighting-controllers Protocol Any · +	
© 2021 Cisco and/c		

Your MUD file is ready!

Congratulations! You've just created a MUD file. Simply Cut and paste between the lines and stick into a file. Your next steps are to sign the file and place it in the location that its corresponding MUD URL will find. To sign the files, do the following:

- · Get a certificate with which to sign documents/email.
- Use OpenSSL as follows: openssl cms -sign -signer YourCertificate.pem -inkey YourKey.pem -in YourMUDfile.json -binary -outform DER -certfile intermediate-certs.pem -out YourSignature.p7s
- · Place the signature file and the MUD file on your web server (it should match the MUD-URL)

Would you like to download this file? Download

Visualize this device in a network? Visualize

```
"ietf-mud:mud": {
         "mud-version": 1,
"mud-version": 1,
"mud-url": "https://lighting.molex.com/lightcontroller",
"last-update": "2019-10-14T14:09:55+00:00",
"cache-validity": 48,
         "is-supported": true,
"systeminfo": "Molex Luminaire",
         "mfg-name": "Molex",
"documentation": "https://molex.com",
           "model-name": "lightcontroller",
           "from-device-policy": {
                     "access-lists": {
                              "access-list": [
                                                 "name": "mud-37278-v4fr"
                                       }
                             1
                   }
        },
"to-device-policy": {
    "to-device-policy: {
                     "access-lists": {
                              "access-list": [
                                                  "name": "mud-37278-v4to"
                                       }
                             1
                   }
         }
},
"ietf-access-control-list:acls": {
          "acl": [
                   {
                              "name": "mud-37278-v4to",
                              "type": "ipv4-acl-type",
                              "aces": {
                                        "ace": [
                                                {
                                                          "name": "ent0-todev",
                                                          "matches": {
                                                                     "ietf-mud:mud": {
                                                                               "controller": "https://molex.com/lighting-controllers"
                                                                   }
```


Let's establish some basic questions

Is it doing what it should be doing?

- With which devices is it actually communicating?
- Is it behaving as designed?

What happens when things break?

Knowing one has a problem is the first step to fixing it.

What do we need?

- A list of all software in the device, complete with version information
- A list of CVEs to know what software may be vulnerable
- A name for packages that matches to what is listed CVEs
- A list of packages in a product that have been fixed
- A way to retrieve all of this

Software inventory: Linux Foundation SPDX

2.4 Primary Component (described by the SBOM)
PackageName: INFUSION
SPDXID: SPDXRef-INFUSION
PackageComment: <text>PURL is pkg:supplier/ACME/INFUSION@1.0</text>
ExternalRef: PACKAGE-MANAGER purl pkg:supplier/ACME/INFUSION@1.0</text>
PackageVersion: 1.0
PackageSupplier: Organization: ACME
Relationship: SPDXRef-DOCUMENT DESCRIBES SPDXRef-INFUSION
Relationship: SPDXRef-INFUSION CONTAIN: NOME
PackageDownloadLocation: NOASSERTION
FilesAnalyzed: false
PackageLicenseDeclared: NOASSERTION
PackageCopyrightText: NOASSERTION

Very similar to what dpkg uses in Ubuntu/Debian.

SPDX Good and Bad

Good

- · Very simple to extend
- YAML-esque
- Easy for humans to read
- Lots of fields and relationships defined
- Gives you a BOM
- Tooling available: <u>https://spdx.dev/resources/tools/</u>

The Bad

- Doesn't tell you what is fixed or not
- They haven't thought through how they want secure the SPDX file itself
- Lots of discussion of GPG key usage
 - This is fine for self-contained and managed linux distributions
 - It's lousy for anything else


```
<?xml version="1.0" encoding="UTF-8"?>
<bom xmlns="http://cyclonedx.org/schema/bom/1.2" serialNumber="urn:uuid:3e671687-395b-41f5-a30f-a58921a69b79"</pre>
version="1">
 <components>
   <component type="library">
      <publisher>Apache</publisher>
      <proup>org.apache.tomcat</proup>
      <name>tomcat-catalina</name>
      <version>9.0.14</version>
      <hashes>
        <hash alg="MD5">3942447fac867ae5cdb3229b658f4d48</hash>
        <hash alg="SHA-1">e6b1000b94e835ffd37fac6dcbdad43f4b48a02a</hash>
        <hash alg="SHA-256">f498a8ff2dd007e29c2074f5=1501a9a01775c31f3aeaf6906ea503bc5791b7b</hash>
        <hash alg="SHA-
512">e8f33e424f3f4ed6db76a482fde1a5298970e442c531729119e37991884. \fab4f94. \b7ee11fccd074eeda0634d71697d6f88a460dce0a
c8d627a29f7d1282</hash>
      </hashes>
      <licenses>
        <license>
                                                                                       Names
          <id>Apache-2.0</id>
        </license>
      </licenses>
      <purl>pkg:maven/org.apache.tomcat/tomcat-catalina@9.0.14</purl>
   </component>
      <!-- More components here -->
 </components>
</bom>
```

Vulnerability EXchange Format (VEX)

- A concept, not a standard
- Probably the most important part for our customers
 - Answers: is this product/package exploitable?
 - Would save us a lot of pain explaining the answer
- Requires trust of the person saying, "yes, I fixed this" or "no, we're not vulnerable"

Example: OASIS Common Security Advisory Framework (CSAF)

- Issued by vendors based on product vulnerabilities
- Describes what you would see in a PSIRT advisory (this is no accident, thanks Omar)
- Not designed to bind to an SBOM (We're still vexed)

There's tooling!

Secvisogram CSAF 2.0 Editor X 🔯 ISO - International Organization X 👼 Google News X 🗘 iot-onboarding/mudmaker a	it ol × +
$- ightarrow >$ C \oplus 0 \oplus https://secvisogram.github.io \Leftrightarrow \checkmark	II\ ♥ E :
* Most Visited 📄 ERT 📄 Smart Bookmarks 📄 Places 🌐 Accelerated Innovat 📄 Cisco 📄 Calendaring 🌟 meteocentrale.ch : : {O Code Navigator 🞽 DC	S - PxGrid - ISE 🚿 🛅 Other Bookmarks
Form Editor JSON Editor Preview CSAF Document	License: MIT Secvisogram
Common Security Advisory Framework	New (minimal fields)
▼ Document level meta-data m	B New (all fields)
Add 'List of acknowledgments'	Doen
Add 'Aggregate severity'	
Document category	Save
VEX	Expand all
CSAF version	Collapse all
2.0 -	
Add 'Rules for sharing document'	
Add 'Document language'	
▼ Notes associated with the whole document.	
▼ Note mi	
Add 'Audience of note'	
Note category	
other •	
Title of note	Validation Status
Author Comment	
Note contents	
Draft ACME INFUSION PoC II VEX document. Unofficial content for demonstration purposes only.	

Great! We have all the doc we need. How do we move it?

How do we discover what the Thing is and bind it to a device?

draft-ietf-opsawg-sbom-access

- Key Questions
 - Where does the SBOM reside?
 - On a web server?
 - On the device itself?
 - Do I need permissions?
 - What's the format of the SBOM?
- Answers are all URIs?

Digital Bills of Materials

Digital Bills of Materials

DBOMs versus direct retrieval

DBOMs are good for...

- Supply chain management
- Private consortia
- Random document exchange
 - DBOM doesn't care about content

MUD discovery is good for...

- Binding the device to a device type
- Learning a specific location of an SBOM
- Ad hoc discovery

These are very early days

- NTIA healthcare POC taking place now
- SBOM formats evolving
- DBOM is nascent
- MUD extension just adopted by IETF opsawg but on a "slow roll"
- Name standards still challenging
- VEX is still vexing

Roles

End User	Manufacturer	ISPs	Governments
Assume Things are going to break	Keep devices up to date	Identify threats	Lead by example, as end users
Keep an inventory of Things	Follow industry best practices	Facilitate consumer best practices	Set minimum standards for government use of Things
Follow best practices	Protect their backend systems!!!		Set policies that protect the infrastructure

The nice thing about best practices is that there are so many of them

The future is pretty bright, if we can survive the present

- We can secure the processor
 - Intel SGX
 - ARM TrustZone
- We can build attestation
 - IETF Remote ATteStation (RATS)
- We can deliver secure software updates
 - Secure Update of IoT (SUIT)

The nice thing about references is that there are so many of them

- RFC 8520: Manufacturer Usage Descriptions
- NIST 1800-15: Parts A-C on Manufacturer Usage Descriptions and DDOS prevention
- <u>https://www.mudmaker.org</u>
- <u>Cisco lot Onboarding WP: https://www.cisco.com/c/en/us/solutions/collateral/internet-of-things/white-paper-</u>
- MUD Manager <u>https://github.com/CiscoDevNet/MUD-Manager</u>
- <u>https://github.com/usnistgov/nist-mud</u>
- osmud.org
- Common Security Advisory Format <u>https://github.com/oasis-tcs/csaf</u>
- CycloneDX <u>https://cyclonedx.org/</u>
- SPDX https://spdx.org
- Digital Bill of Materials https://github.com/DBOMproject/
- Bootstrapping Remote Secure Key Infrastructure https://datatracker.ietf.org/doc/rfc8995/
- Device Provisioning Protocol (EasyConnect) <u>https://www.wi-fi.org/file/device-provisioning-protocol-draft-specification</u>
- Architectural Considerations for IoT Device Security In The Home https://www.ripe.net/publications/docs/ripe-759

[©] ²⁰²Fido Device Onboarding <u>https://fidoalliance.org/intro-to-fido-device-onboard/</u>

Thanks! Questions?

CISCO The bridge to possible