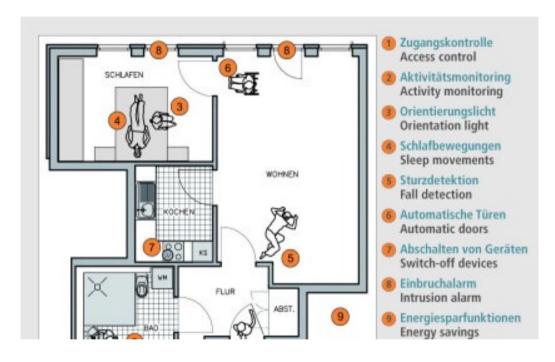
Lecture #9: IoT security in non-carpeted areas

<u>Cristian Hesselman</u>, Elmer Lastdrager, <u>Ramin</u> <u>Yazdani</u>, and Etienne Khan

University of Twente | June 9, 2021



Non-carpeted areas

The stuff one can do with carpets, though ;-)

https://archello.com/product/sensfloor

Today's agenda

• Admin

• Introduction

• Paper #1: security in LoraWAN networks

• Paper #2: mapping Industrial Control Systems (ICSs)

Feedback

Admin

Oral exams

Monday 28 June 2021

- Online through Canvas
- Signup through Canvas 'Appointment' (starting this afternoon)
- 45 minutes
- See: https://courses.sidnlabs.nl/ssi-2021/#oral-exam

Lab report progress

How far are you with the Lab report?

- A. Developing methodology
- B. Gathering network data from IoT devices
- C. Analyzing network data from IoT devices
- D. Writing report

Firm deadline: Sunday June 20, 2020, 23:59 CEST

Official feedback forms

- Survey by EEMCS Quality Assurance folks
- Will be sent out on June 10
- Closes on July 1
- Please fill it out, your feedback is **crucial** for us to further improve the course!
- Next year's students will thank you for it ;-)

			aster Studen	rona	Electric Paper			
			lity Assurance EEMCS			HAUVEDON	FEIT TIMENTE	
acult	ty of EEMCS	0				UNIVERSITEIT TWENTE.		
lark as	shown:	Please use a bal	l-point pen or a t	thin felt tip. This form will be p	rocessed	automatically.		
orrecti	on: 🗆 🗖 🗆 🔀	Please follow the	examples show	vn on the left hand side to help	p optimize	the reading results.		
1 A	dministrative						_	
1.1	Which Master progr	ramme do you at	tend?	Applied Mathematics	☐ Business Information Technology		☐ Computer Science	
				☐ Electrical Engineering ☐ Internet Science	Sy	nbedded rstems stems & Control	☐ Interaction Technology ☐ Other	
1.2	Which other Master	r programma da s	ou attand?	and Technology				
1.2	☐ Applied Physics☐ Chemical Engine ☐ Construction Ma Engineering	eering	☐ Biome	edical Engineering Engineering & Managen ational Science & Techno		☐ Business Ad ☐ Communicat ☐ Environment Managemen	tion Science tal & Energy	
	☐ European Studie	es	☐ Geo-ii Earth	nformation Science and Observation		Geographica Managemen	al Information t and Applications	
	☐ Health Sciences		☐ Indus	trial Design Engineering	1	Industrial En Managemen		
	☐ Mechanical Engi	ineering	Metho Behav Scien	odology & Statistics for t vioural, Biomedical & So ces	he ocial	□ Nanotechnology		
	Philosophy of Science, Technology & Society		☐ Psych	nology		☐ Public Administration		
	Science Education and Communication		Socia Educa	I Sciences and Humanitation	ties	es Spatial Engineering		
	☐ Sustainable Ene			nical Medicine		☐ Water Techn		
1.3	At which university (hoofdinschrijving)?	are you primary	enrolled in	☐ University of Twente	of De	elft University Technology	☐ Eindhoven University of Technology	
				☐ Other				
2. 0	Online/hybrid educ	cation						
2.1	How did you experi education as offered	ence the online/h d in this course?	ybrid Insut	fficient		☐ Excellent	□ N/A	
2.2	Which teaching act		the best?					
2.3	Which teaching act	ivities worked co	unterproducti	ve for you?				
5261U0	P1PL0V0						31.05.2021, Page 1	

Interactive lectures

- Overall objective: enable you to learn from each other and further increase your understanding of the papers, contributes to preparing yourself for the oral exam
- Interactive format
 - Teachers summarize two papers per lecture
 - Multiple-choice questions (not graded) and discussion
 - We ask at least one of you to share their thoughts on each paper (main lesson learned, etc.)
 - Enables you to learn from each other, so mandatory to participate
- A 7th "re-sit" lecture in case you miss a lecture (optional for everybody else), same format

Where are we now?

No.	Date	Contents			
1	Apr 21	Course introduction Guest lecture #1: how the core of the internet is organized, Marco Davids (SIDN Labs)			
2	Apr 28	Guest lecture #2: the relationship between regulation & IoT security, Eelco Vriezekolk, Agentschap Telecom (Dutch telecoms regulator)			
3	May 6*	Lecture: IoT Concepts and Applications			
4	May 12	Lecture: IoT Botnet Measurements			
5	May 18	Lecture: IoT Honeypots			
6	May 25*	Guest lecture #3: The Life Of An IoT Device, Eliot Lear, Cisco Systems			
7	May 26	Lecture: IoT Edge Security Systems			
8	Jun 2	Lecture: IoT Device Behavior			
9	Jun 9	Lecture: IoT security in Non-Carpeted Areas			
10	Jun 16	Lecture: IoT Edge Security Systems (re-sit)			

Introduction

Motivation for today: IoT is more than the home

Discussion: other IoT/ICS applications?

What other IoT/ICS applications do you envision?

Today's papers

[Lora] X. Wang, E. Karampatzakis, C. Doerr, and F.A. Kuipers, "Security Vulnerabilities in LoRaWAN", Proc. of the 3rd ACM/IEEE International Conference on Internet-of-Things Design and Implementation (IoTDI), Orlando, Florida, USA, April 17-20, 2018

[ICS] Li, Q., Feng, X., Wang, H., & Sun, L. (2018). Understanding the Usage of Industrial Control System Devices on the Internet. IEEE Internet of Things Journal, 5(3), 2178–2189. doi:10.1109/jiot.2018.2826558

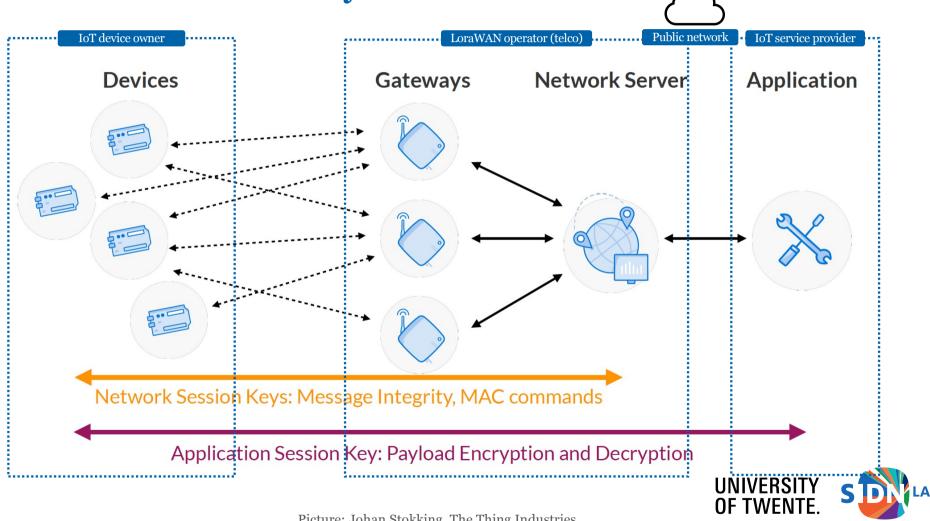
Today's learning objective

- After the lecture, you will be able to discuss technologies for non-consumer IoT applications ("non-carpeted areas"), specifically
 - Security vulnerabilities of LoraWAN and their mitigations
 - Measurement techniques to detect ICS systems that are connected to the Internet but shouldn't
- Contributes to SSI learning goal #1: "Understand IoT concepts and applications, security threats, technical solutions, and a few relevant standardization efforts in the IETF"

Paper #1: "Security Vulnerabilities in LoRaWAN", 3rd ACM/IEEE International Conference on Internet-of-Things Design and Implementation (IoTDI), Orlando, Florida, USA, April 17-20, 2018

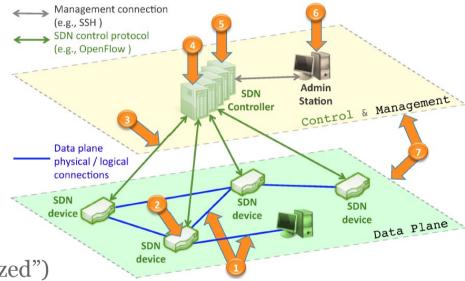
LoraWAN: low power, wide area, low bitrate comms

LoraWAN temperature sensor


Quiz: warming up

What classical definition of security does the paper use?

- A. Communication, Information, and Authority
- B. Confidentiality, Integrity, and Availability
- C. Authentication, Authorization, and Accounting
- D. Stability, Resilience, and Transparency



LoraWAN roles and keys

Key security functions

- Data plane (packet forwarding)
 - Encryption of LoraWAN payloads
 - Message integrity verification
 - Replay protection
- Management plane
 - Key derivation (symmetric)
 - Device enrollment protocol (OTA and "personalized")
 - Over the air firmware updates

Source: D. Kreutz, F. M. V. Ramos, P. Verissimo, HotSDN'13, August 16, 2013, Hong Kong, China.

Research based on older LoraWAN spec

• January 2015: 1.0

• February 2016: 1.0.1

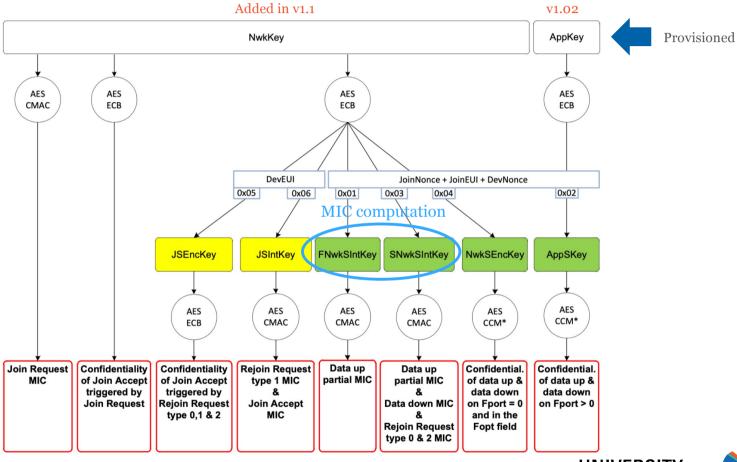
· July 2016: 1.0.2

• October 2017: 1.1, adds Class B

• July 2018: 1.0.3

• October 2020: 1.0.4

Quiz: over-the-air activation


What's the root of trust in OTAA mode?

- A. AppSKey
- B. NwkSKey
- C. AppKey
- D. NwkKey

LoraWAN key derivation

v1.1: logical separation between network and application operator

Denial of Service through replay

	time	counter	port	dev id	
	▲ 16:16:00	13	6	22	34 34 37 20 30 32 34 00
	▲ 16:15:25	12	61	22	34 39 36 20 30 32 34 00
	16:14:51	11	20	22	35 34 33 20 30 32 31 00
Injected message	16:08:49	10	49	22	34 38 30 20 30 32 31 00
	▲ 16:08:34	0	71	22	31 39 32 20 30 32 32 00
_	16:07:59	10	49	22	34 38 30 20 30 32 31 00
	▲ 16:06:16	7	41	22	35 32 37 20 30 32 33 00
	▲ 16:05:42	6	61	22	36 38 37 20 30 32 34 00
	16:05:07	5	134	22	34 39 34 20 30 32 33 00
	1 6:03:59	3	83	22	34 34 38 20 30 32 32 00
-					

Fig. 7. Log file of the victim's server.

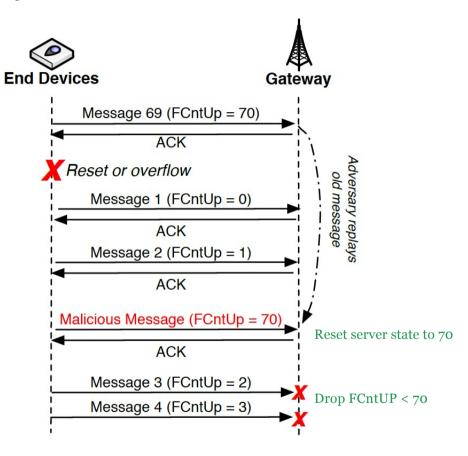
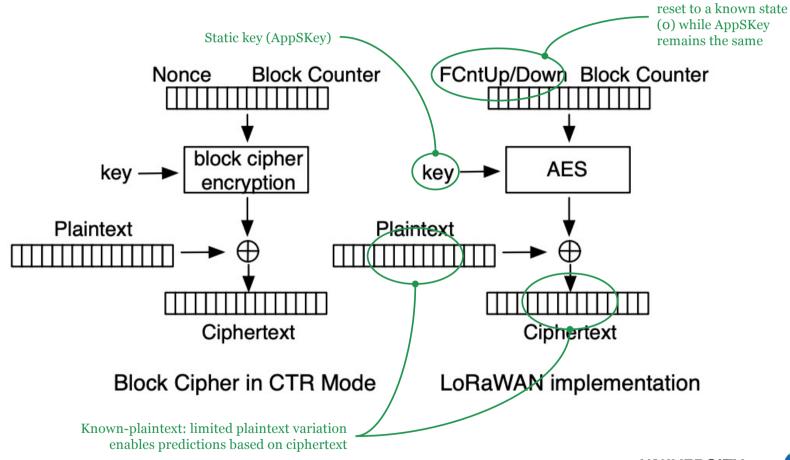


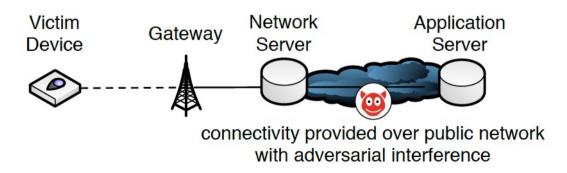
Fig. 4. An example of a replay attack for ABP.


Quiz: eavesdropping

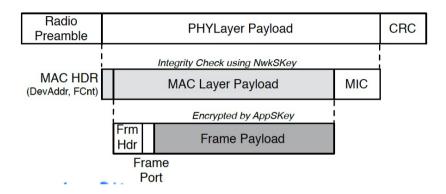
What's the root cause of the eavesdropping attack?

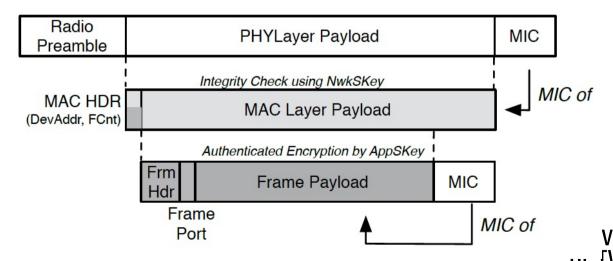
- A. LoraWAN nodes use message counters as the encryption nonce
- B. LoraWAN nodes use limited payload sizes
- C. LoraWAN nodes use known formats for their messages
- D. LoraWAN nodes use a block cipher in counter mode

Known-plaintext attack ("crib dragging")

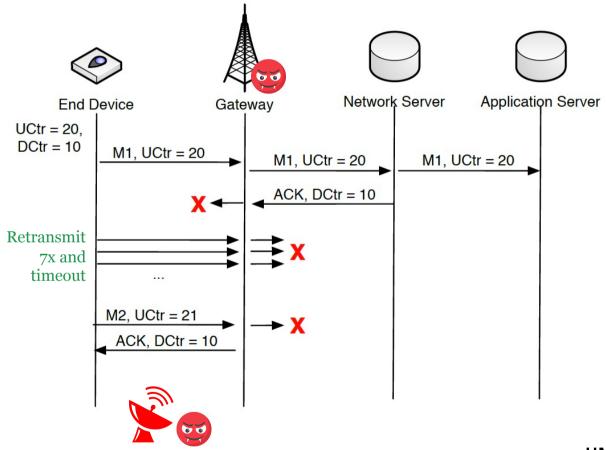

Frame counter, can be

Quiz: message integrity


Why does LoraWAN not support end-to-end message integrity?


- A. LoraWAN is a link-level technology
- B. LoraWAN messages are encrypted
- C. LoraWAN does not support application-level MICs
- D. LoraWAN devices cannot be compromised

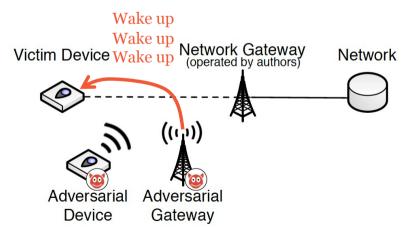
Proposed solution: 2 MICs



ACK spoofing: ack'ing other frames than original

Jammer

Quiz: ACK spoofing


The fundamental problem with the ACK spoofing attack is that ACKs do not indicate which specific uplink message they confirm. How do the authors propose to extend ACK messages to tackle this problem?

- A. Include a nonce signed by the gateway's private key
- B. Include the frame counter value of the uplink message
- C. Include cryptographic checksum that covers the uplink packet
- D. Accept the risk because adding more info to ACKs would be too expensive

Key takeaways

- Designing network security protocols is challenging
- Many different corner cases that folks will try to exploit
- My "favorite" attacks
 - Content guessing based on typical packet content (small messages, known data formats, etc.)
 - Remote battery draining

Discussion

- What would you do to better in the development process to make LoraWAN more secure?
 - IETF-like standardization?
 - Formal verification?
 - Open-source implementation?

• ...

Paper #2: "Understanding the Usage of Industrial Control System Devices on the Internet", IEEE Internet of Things Journal

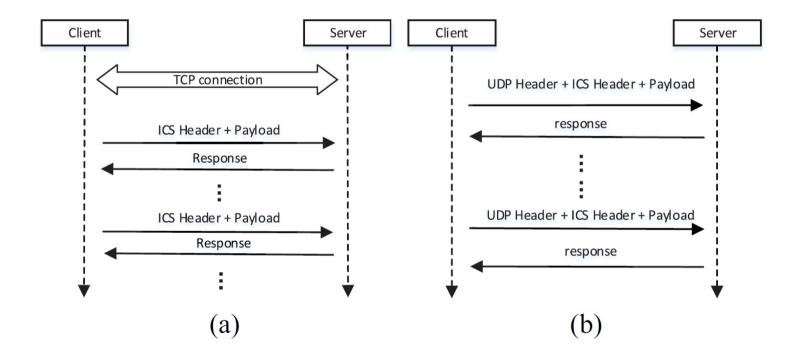
Key Concept: ICS exposure on the Internet

Two major pitfalls in a large scale scan

- Honeypots addressed by using a Naive Bayes classifier
- Dynamic IP addresses
 other features used as a device identifier

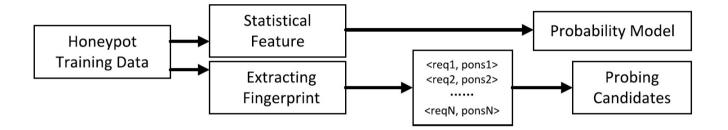
Discussion Question #1

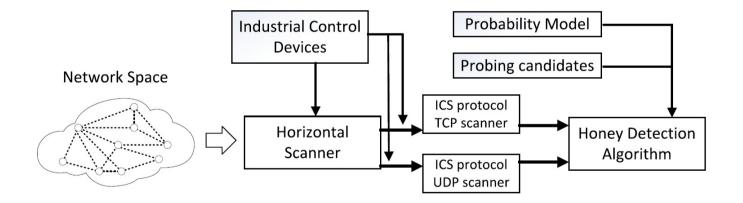
What other issues can you think of when running an Internet-wide scan?


Basics Considerations

- One stateless packet to detect live hosts in IPv4
- A learning model to reduce the number of honeypot detection queries
- Dynamic IPs addressed using extra identifiers

ICS Communication Interactions


TCP vs UDP communication model



Device Discovery Architecture

• Offline training phase

• Online discovery phase

Fingerprinting Honeypots (1/2)

- "Honeypot detection is straightforward because they are merely simulations of networking services and have their implementation details."
- Naive Bayes classification:

$$p(y|X) \propto p(y)p(X|y)$$

$$p(X|y) = \prod_{x_i \in X} p(x_i|y)$$

$$p(x_i|y) = \frac{p(x_i \cap y)}{p(y)}$$

$$p(x_i \cap y) = \frac{N_{x_i \cap y}}{N_{total}}$$

• If p(y|X) bigger than a threshold S_{th} then verify at the next stage.

Fingerprinting Honeypots (2/2)

Algorithm 1 Fingerprint Generation

Input: different kinds of ICS honeypot fingerprints, $F = \{f_1, ..., f_N\}$, every f_i has a accuracy R_i

Output: final fingerprint used to identify honeypots, F_{final}

1: **for** (each
$$f_i = \{(p_1, r_1), ..., (p_i, r_i), ..., (p_N, r_N)\}$$
 in F) **do**

2:
$$T_i = \sum_{i=1}^{N} cost(p_i, r_i)$$

- 3: heuristic criterion: $H = \{h_1, h_2, ..., h_N\}, h_i = \frac{R_i}{T_i}$
- 4: Sort(H)
- 5: choose the lowest-cost top K C_i and its related f_i
- 6: generate final F_{final}
- 7: end for

Online Detection

Algorithm 2 Online Detection of ICS Devices

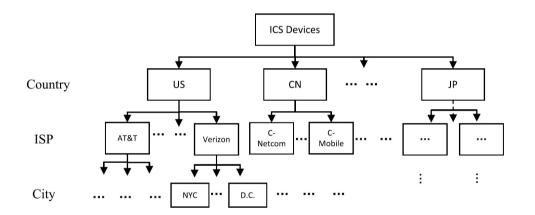
```
Input: The list of the detection range, list;
Output: The list of ICS devices, list';
 1: Using a random algorithm to resort the list^r = list;
 2: for (each IP in list<sup>r</sup>) do
        send one packet
        each packet with stateless
        add each live host into list'
 6: end for
 7: for (each IP in list') do
        using ICS protocols verifies it
        add the quantified host into list'
10: end for
11: for (each IP in list') do
        if (p(y_i|X) > S_{th}) then
12:
           send packet with packets FF with Algorithm 1.
13:
           if (get its responses & match the fingerprint) then
14:
               add it into listhoneypots, remove it from list'
15:
16:
           end if
        end if
17:
18: end for
```

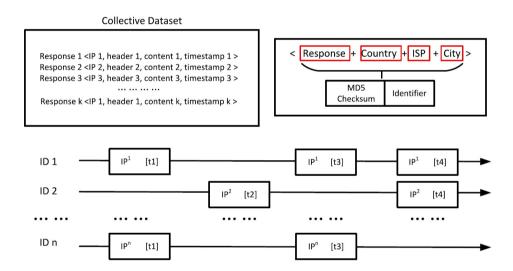

Quiz

Which feature wasn't used to identify a unique ICS device?

A: Country

B: City

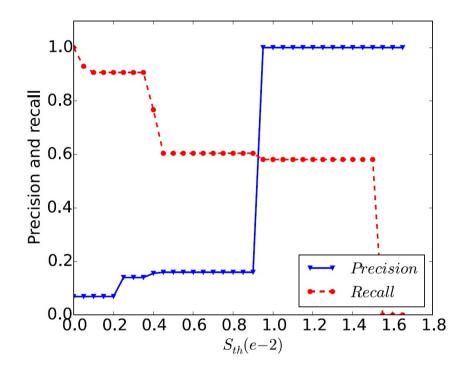

C: ASN


D: ISP

E: Response packet

Device Identifiers

Evaluation


- Honeypot detection
- ICS device detection
- Dynamic IP and device identifier

Honeypot detection

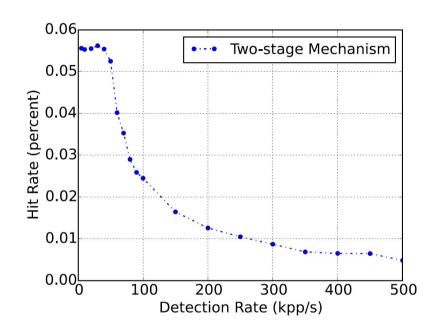
- A random /16 (65536 IP addresses)
- Manually determine ICS vs honeypots
- In total 617 responsive hosts (575 real devices and 42 honeypots)
- Split into training and test datasets

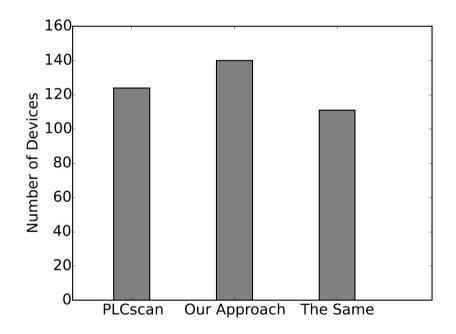
• How reliable is this (manually labeling devices vs honeypots)?

Honeypot Fingerprinting

- Conpot (a typical ICS honeypot) is used for verification
- Four features (#open ports, HTTP config, Modbus, S7 signal code)

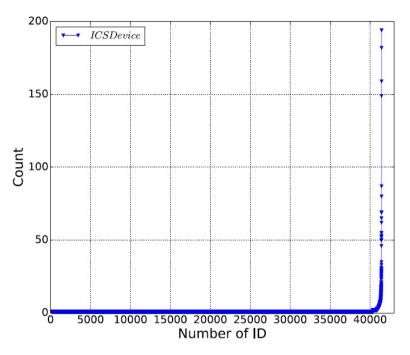
TABLE II
COST AND RELATIVE DEGREE OF FEATURES


Features	Cost (packet)	Relative degree
Amount of open ports	6	26/297
HTTP configuration	4	9/297
Modbus signal code	5	15/297
S7 signal code	9	15/297


TABLE III
COMPARISON BETWEEN OUR GENERATED FINGERPRINTS
AND TRADITIONAL FINGERPRINTS

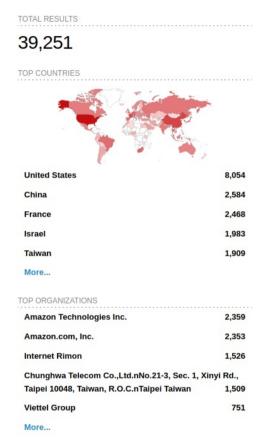
	Cost (every host)	Accuracy
Traditional fingerprint	20+ packets	100%
Our generated fingerprint	5 packets	95.2%

ICS Device Detection



Dynamic IP and Device ID

Modbus August 2015 - March 2016



S7, Modbus, Tridium Niagara Fox and BACnet October 2015

ICS Lookup using Shodan

```
Shodan.io
/explore
/category
/industrial-control-systems
```


Discussion

- Would you propose a different identifier than one in the paper to overcome dynamic IPs?
- How realistic is the honeypot fingerprinting method?

Key takeaways

- Device discovery as the first step of security analysis is more sensitive in this context due to ICS device nature
- Honeypot detection might not be as straight forward as the authors of this paper claim
- Device identifiers (if properly chosen) are a promising metric to overcome dynamic IP addresses

Feedback

Today's objective revisited

- After the lecture, you will be able to discuss technologies for non-consumer IoT applications ("non-carpeted areas"), specifically
 - Security vulnerabilities of LoraWAN and their mitigations
 - Measurement techniques to detect ICS systems that are connected to the Internet but shouldn't
- Contributes to SSI learning goal #1: "Understand IoT concepts and applications, security threats, technical solutions, and a few relevant standardization efforts in the IETF"

Lecture feedback

- 1. To what extent do you think you'll be able to discuss security vulnerabilities of LoraWAN and their mitigations? $(A = \bigcirc, B = \bigcirc, C = \bigcirc)$
- 2. To what extent do you think you'll be able to discuss measurement techniques to detect Internet-connected ICS systems ($A = \bigcirc$, $B = \bigcirc$, $C = \bigcirc$)

Volg ons

- .nl SIDN.nl
- © @SIDN
- in SIDN

Discussion & feedback

Next lecture: **Wed Jun 16 (resit)**, **11:00-12:45**

Topic: IoT edge security systems II

