Lecture #5: IoT malware analysis

<u>Cristian Hesselman, Elmer Lastdrager</u>, Ramin Yazdani, and Etienne Khan

University of Twente | May 25, 2022

** JUS LOT MANAGE

USALENAUESOEUMARE

WH .GOV

memegenerator.net

Today's agenda

- Admin
- Introduction to today's lecture
- Paper on RIoTMAN
- Break
- Paper Open for Hire
- Feedback

Admin

Interactive lectures

- Overall objective: enable you to learn from each other and further increase your understanding of the papers, contributes to preparing yourself for the oral exam
- Interactive format
 - Teachers summarize two papers per lecture
 - Multiple-choice and open questions (not graded) and discussion
 - Enables you to learn from each other, so mandatory to participate
- A 7th "re-sit" lecture in case you miss a lecture (optional for everybody else), same format

Paper summaries

- You must have handed in your two summaries **before 7AM on the day of the lecture**
- Each summary can be at most 250 words, at most 1 single-sided A4 page
- You can add figures, and graphs from the paper or add your own if you like (e.g., concept maps)
- You can use the summaries during the oral exam
- Submit through CANVAS
- You <u>cannot</u> complete SSI without submitting 12 paper summaries!

Schedule

No.	Date	Contents
1	Apr 26	Course introduction Guest lecture #1: IoT and SPIN
2	May 11	Lecture: IoT security risks and challenges
3	May 18	Lecture: IoT Botnet Measurements
4	May 24	Guest lecture #2: Intro to cyber-physical systems (Jeroen Gaiser, Rijkswaterstaat)
5	May 25	Lecture: IoT Malware Analysis
6	Jun 1	Lecture: IoT Edge Security Systems
7	Jun 7	Lecture: IoT Device Security
8	Jun 14	Guest lecture #3: Strengthening the IoT Ecosystem: Privacy Preserving IoT Security Management (Dr Anna Maria Mandalari, Imperial College London)
9	Jun 15	Lecture: IoT in Non-Carpeted Areas
10	Jun 22	Lecture: IoT Honeypots (re-sit)

Important dates

- Two summaries per lecture: before the lecture (07:00 CEST) in which the papers will be discussed
- Lab report (PDF) and required files: Sun June 26, 2022, 23:59 CEST
- All to be submitted through CANVAS

Introduction to today's lecture

Motivation: mitigation of IoT botnets

- Requires tools and services to understand different IoT botnets in a timely way and means to detect and eradicate them
- Challenging because of wide variety of IoT devices and their increasing number and distribution across multiple network operators
- Examples: post-mortem analysis [Mirai, Hajime], IoT honeypots [IoTPot, Honware], automated malware analysis [RIoTMAN], firewalls and IDS [DBolt, ARA]

Today's papers

[RIoTMAN] A. Darki, and M. Faloutsos, "RIoTMAN: a systematic analysis of IoT malware behavior", CoNEXT '20: Proceedings of the 16th International Conference on emerging Networking EXperiments and Technologies, November 2020

[OpenForHire] S. Srinivasa, J.M. Pedersen, E. Vasilomanolakis, "Open for hire: Attack trends and misconfiguration pitfalls of IoT devices", 21st ACM Internet Measurement Conference (IMC 2021), November 2021

Today's learning objective

- After the lecture, you will be able to discuss different ways of analyzing IoT malware at scale, so across different IoT botnets (the pervious lecture focused on individual botnets)
- Contributes to SSI learning goal #1: "Understand IoT concepts and applications, security threats, technical solutions, and a few relevant standardization efforts in the IETF"

"RIoTMAN: a systematic analysis of IoT malware behavior"

16th International Conference on emerging Networking EXperiments and Technologies (CoNEXT), November 2020

Wooclap quizzes (max 3 per paper)

Multiple-choice questions: 30 seconds Open questions: 1.5 minutes

Problem and approach

- Profiling the behavior of IoT malware based on binaries => understand, detect, mitigate
- Labor intensive because of wide variety of a IoT devices and their growing number
- RIoTMAN dynamically analyzes botnets: adaptive sandboxing and communications exploration
- Goal: profile the behavior of IoT malware binaries
- Activated malware: infection complete and establishes comms with outside world
- Engaged malware: instructions result in new traffic/system behavior and connection stays up UNIVERSITY

Example: Linux.Tsunami

Key measurement result – what are we looking at?

.ABS

RIoTMAN measurement architecture

What are the responsibilities of the components? Discuss!

Measurement results

Total binaries	2885	
Activated	2688	93%
Engaged	2291	79%

Command Type	Malware		
Configuration or Report	1750	61%	
Attack	2031	70%	
Scanning	1842	<mark>64</mark> %	
Termination	1684	58%	

22

IoT malware behaviors discovered

ID address	Single	2261
IF address	Multiple	62
Domain	Fixed	257
Domain	DGA	5

Family from	Impersona-	Gafgyt C&C		Tsunami C&C		Aidra C&C	Mirai C&C
Virustotal	tion Success	Prometheus	QBot	Remaiten	Capsaicin	Lightaidra	Mirai
Gafgyt (>6 sub-families)	94%	148	1296		2	-	5
Tsunami (>2 sub-families)	98%	4	26	43	25	-	
Aidra (>2 sub-families)	87%	1	5	-	· · ·	2	
Mirai (>2 sub-families)	86%	-		+	-		402
IRCBot	76%		-	-	13	-	3
IoTReaper	50%			+	-		2
Other (>14 families)	71%	13	120	5	6	1	45
Unclassified	70%	1	76	9	15	1	22
Total (weighted)	79%						

Malana Danadana	Most common techniques							
Malware Procedure	Bin.	Technique 1	Bin.	Technique 2	Bin.	Technique 3		
Infection	1676	Brute-force login	166	Exploit public facing apps	-	None observed		
Persistence	375	Add routine in rc script	333	Add a job to cronjob	15	Specific to IoT device		
Defense evasion	1494	Process masquerading	648	Malware binary removal	128	Software packing		
Identifying device	1445	Use network config	843	Use config files	286	List processes in device		
Impact on host	414	Block OS level access	413	Stop remote services	6	Bitcoin mining		

RIoTMAN and its ecosystem

Limitations

- Linux-based IoT devices only
- They exclude botnets that use encryption, P2P botnets, and IPv6 communications

Further discussion

Key takeaways

- Dynamic analysis of IoT malware, limited manual effort
- Important to understand, detect, and mitigate IoT botnets at scale
- One piece of the "IoT botnet mitigation puzzle"
- Significant amount of work in terms of engineering, finding datasets, and analysis
- Next challenge: how will RIoTMAN-like systems work in practice (higher TRLs)?

Coffee break

"Open for hire: Attack trends and misconfiguration pitfalls of IoT devices" Internet Measurement Conference 2021

S. Srinivasa, J.M. Pedersen, E. Vasilomanolakis

Question: what is this paper about? (And the methodology)?

Three-part methodology

Scanning IPv4 or IPv6?

Scanning IPv4: Misconfigurations

Protocol	Vulnerability	#Devices found
CoAP	No auth, admin access	427
AMQP	No auth	2,731
Telnet	No auth	4,013
XMPP	No encryption	5,421
CoAP	No auth	9,067
Telnet	No auth, root access	22,887
MQTT	No auth	102,891
XMPP	Anonymous login	143,986
CoAP	Reflection-attack resource	543,341
UPnP Reflection-attack resource		998,129
	Total	1,832,893

Table 5: Total misconfigured devices per protocol

Scanning: discovered devices

Honeypots

What do you conclude?

Attacks per service

Figure 7: Attack trends by type (%) and protocol

Attacks per honeypot software

Honeypot	Simulated Device Profile	Protocol	#Attack events	Scanning service*	Malicious*	Unknown/ Suspicious*
	Arduino Board	Telnet MQTT	19,733 2,511			2,347
		AMQP	2,780			
HoslaGe	with IoT Protocols	COAP	11,543	2,866	21,189	
		SSH	19,174			
		HTTP	16,192			
		SMB	1,830			
U-Pot	Belkin Wemo smart switch	UPnP	17,101	1,121	7,814	1,786
	Siemens S7 PLC	SSH	12,837	1,678	11,765	1,876
C		Telnet	12,377			
Conpot		S7	7,113			
		HTTP	11,313			
ThingPot	Philips Hue Bridge	XMPP	11,344	967	2,172	963
Countin	SSH Server	SSH	15,459	2,111	12,874	1,113
Cowrie	with IoT banner	Telnet	14,963			
	Arduino IoT device with frontend	HTTP	11,974	1,953	13,876	1,694
D		MQTT	1,557			
Dionaea		FTP	3,565			
		SMB	6,873			
	Total		200,209	10,696	69,690	9,779

Table 7: Total attack events by type and protocol on honeypots (* unique source IPs)

Telnet and SSH scans

Multistage attacks

Figure 9: Multistage attacks detected on honeypots

Darknet / Network telescope

Protocol	Daily Avg. Count	Unique IP	Scanning-service	Unknown/Suspicious
Telnet	2,554,585,920	85,615,200	4,142	85,611,058
UPnP	131,794,560	1,8633	2,279	16,354
CoAP	68,353,920	2,342	627	1,715
MQTT	17,072,640	5,572	1,248	4,324
AMQP	13,907,520	7,132	2,256	4,876
XMPP	6,429,600	4,255	1,973	2,282
Total	2.7 Bil.	85.6 Mil.	12525	85.6 Mil.

Table 8: Telescope suspicious traffic classification

Linking datasets

Volg ons
Nolg ons
SIDN.nl
@SIDN
In SIDN

Discussion

Key takeaways

- RIoTMan shows the next steps in analyzing botnets in an automated fashion.
- Combining datasets (just like in the Mirai paper) at scale is feasible (but still a lot of work ^(C))
- Today's papers only provide a small piece of the puzzle of how conduct botnet analysis in the future.

Lecture feedback

https://www.wooclap.com/SSILECTURE5

1: wooclap

2: Open feedback

Volg ons

Nolg ons
SIDN.nl
@SIDN
SIDN

Discussion & feedback

Next lecture: Wed Jun 1, 10:45-12:30 VR 583

