Lecture #3: IoT Botnet Measurements 1

Cristian Hesselman, <u>Elmer Lastdrager</u>, Ramin Yazdani, and <u>Etienne Khan</u>

University of Twente | May 10, 2023

For 8 years, a hacker operated a massive IoT botnet just to download Anime videos

Admin

Interactive lectures

• Objective: enable you to learn from each other and further increase your understanding of the papers, contributes to preparing yourself for the oral exam

- Interactive format
 - Teachers summarize two papers per lecture
 - Multiple-choice questions (not graded) and discussion
 - We ask at least one of you to share their thoughts on each paper (pros, cons, surprises)
 - Enables you to learn from each other, so mandatory to participate
- A 7th "re-sit" lecture in case you miss a lecture (optional for everybody else), same format

Paper summaries

- One summary for each of the papers we'll discuss during the lectures
- Each summary can be at most 250 words, at most 1 single-sided A4 page
- You can add figures and graphs from the paper or add your own if you like
- Due before 7AM on the day of the lecture in which the papers will be discussed

• Submit through Canvas

Schedule

No.	Date	Contents		
1	Apr 26	Course introduction		
2	May 3	Lecture: IoT and Internet Core Protocols		
3	May 10	Lecture: IoT Botnet Measurements 1		
4	May 17	Lecture: IoT Edge Security Systems		
5	???	Guest lecture #1: TBD		
6	May 24	Lecture: IoT Device Security		
7	May 31	Lecture: IoT Botnet Measurements 2		
8	Jun 7	Lecture: IoT in Non-Carpeted Areas		
9	Jun 12	Guest lecture #2: From IP-addresses to domain names: a crash course in Internet architecture (Marco Davids, SIDN Labs)		
10	Jun 14	Lecture: IoT Honeypots (re-sit)		

Important dates

• Two summaries per lecture: before the lecture (07:00 CEST) in which the papers will be discussed

• Lab report (PDF) and required files: Friday June 23, 2023, 23:59 CEST

• All to be submitted through CANVAS

Introduction to today's lecture

Today's objective

• Discussing two botnets: after the lecture, you will be able to discuss how IoT botnets are organized and spread their infections.

• [Mirai] is the infamous botnet that alerted many of the risks of IoT devices.

• [Hajime] is a more advanced IoT botnet, compared to Mirai, when it comes to bot management and usage of exploits.

• Contributes to SSI learning goal #1: "Understand IoT concepts and applications, security threats, technical solutions, and a few relevant standardization efforts in the IETF"

Today's papers

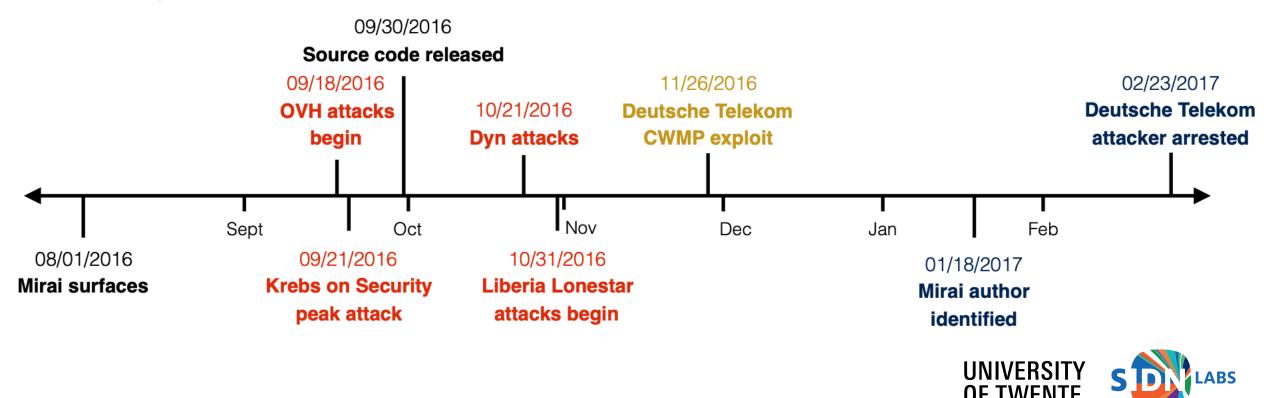
Are about measuring IoT botnets

- [Mirai] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis, D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman, N. Sullivan, K. Thomas, and Y. Zhou, "Understanding the Mirai Botnet", in: 26th USENIX Security Symposium, 2017
- [Hajime] S. Herwig, K. Harvey, G. Hughey, R. Roberts, and D. Levin, "Measurement and Analysis of Hajime, a Peer-to-peer IoT Botnet", Network and Distributed Systems Security (NDSS) Symposium 2019, San Diego, CA, USA, February 2019

USENIX Security Symposium / NDSS? Any good?

Conference	CIF (2022)	AR (2013-2022)	PR (2013-2022)	CR (2022)
1. IEEE <u>S&P</u>	3.82	12.9% = 76.5 / 591	9.6% = 76.5 / 797.7	3.7% (<u>134</u>)
2. USENIX Sec	2.79	17.0 % = 120.7 / 712	15.2% = 120.7 / 794.9	3.7% (<u>136</u>)
3. NDSS	2.70	16.8% = 69.9 / 416.1	16.9% = 69.9 / 412.6	3.4% (<u>146</u>)
4. ACM CCS	2.53	18.8% = 145.3 / 774.9	16.5% = 145.3 / 882.7	3.4% (<u>146</u>)
5. <u>Eurocrypt</u>	2.49	22.6% = 65.4 / 289.9	11.7% = 65.4 / 556.9	5.2% (<u>96</u>)
6. <u>Crypto</u>	2.43	23.8% = 78.4 / 329	12.3% = 78.4 / 637.7	5.1% (<u>98</u>)
7. CHES	2.18	28.8% = 46.7 / 161.9	9.9% = 46.7 / 471.5	7.2% (<u>69</u>)
8. IEEE EuroS&P	2.07	22.5% = 37.6 / 167 (2016-2022)	18.6% = 37.6 / 202.6 (2016-2022)	7.1% (<u>70</u>)
9. ACSAC	1.92	21.9% = 56.7 / 259.4	22.5% = 56.7 / 252.5	7.7% (<u>65</u>)
10. Asiacrypt	1.91	25.5% = 72 / 282	20.0% = 72 / 360.5	6.9% (<u>72</u>)
11. <u>FC</u>	1.90	24.2% = 35.5 / 146.7	22.3% = 35.5 / 159.4	6.1% (<u>82</u>)
12. <u>ACNS</u>	1.712	21.9% = 36.2 / 165.5	22.6% = 36.2 / 160	13.9% (<u>36</u>)
13. ACM AsiaCCS	1.706	21.2% = 66.8 / 315.8	29.1% = 66.8 / 229.3	8.3% (<u>60</u>)
14. ESORICS	1.66	19.5% = 64.4 / 329.8	30.4% = 64.4 / 211.7	10.2% (<u>49</u>)
15. <u>PKC</u>	1.65	26.6% = 39.8 / 149.4	21.7% = 39.8 / 183.1	12.5% (<u>40</u>)
16. <u>RAID</u>	1.60	25.0% = 28.1 / 112.6	25.7% = 28.1 / 109.2	11.9% (<u>42</u>)
17. <u>CT-RSA</u>	1.53	30.4% = 26 / 85.5	23.5% = 26 / 110.5	11.4% (<u>44</u>)
18. IEEE CSF	1.441	28.9% = 30.4 / 105.3	28.0% = 30.4 / 108.7	12.5% (<u>40</u>)
19. ACM WiSec	1.437	30.8% = 27.1 / 88	25.6% = 27.1 / 105.8	13.2% (<u>38</u>)
20. <u>TCC</u>	1.27	37.1% = 51.3 / 138.4	27.7% = 51.3 / 184.9	13.9% (<u>36</u>)

http://jianying.space/conference-ranking.html Or: http://portal.core.edu.au/conf-ranks/


"Understanding the Mirai Botnet" 26th USENIX Security Symposium, 2017

Antonakakis, April, Bailey, Bernhard, Bursztein, Cochran, Durumeric, Halderman, Invernizzi, Kallitsis, Kumar, Lever, Ma, Mason, Menscher, Seaman, Sullivan, Thomas, and Zhou

Mirai post-mortem

- Impressive cooperation between = different vantage points:
 - Akamai Technologies, Cloudflare, Google, Merit Network
 - Georgia Institute of Technology, University of Illinois Urbana-Champaign, University of Michigan

Quiz

Botnets can be used for purposes other than launching DDoS attacks.

For what other activity was the Mirai botnet used?

- A Bitcoin mining
- B Sending spam
- C Sharing videos
- D Click fraud

Mirai uses default passwords

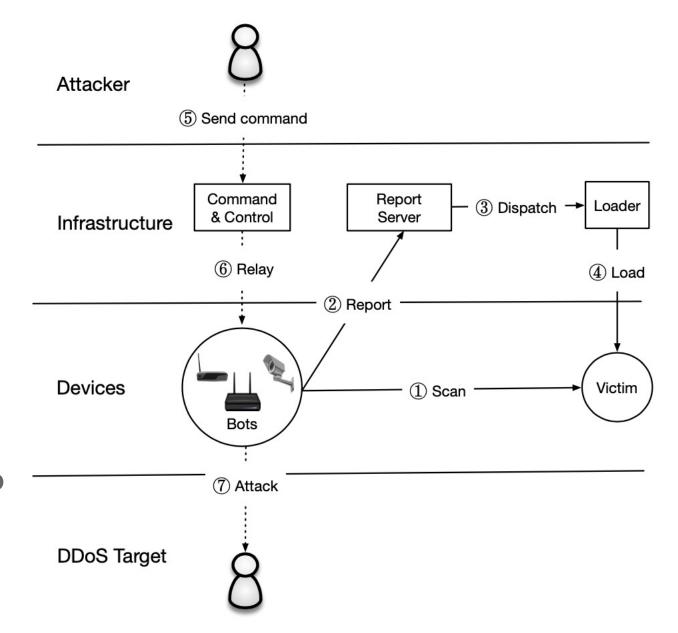
```
// Set up passwords
add_auth_entry("\x50\x4D\x4D\x56", "\x5A\x41\x11\x17\x13\x13", 10);
                                                                                                    xc3511
                                                                                        // root
add_auth_entry("\x50\x4D\x56", "\x54\x4B\x58\x5A\x54", 9);
                                                                                        // root
                                                                                                    vizxv
add_auth_entry("\x50\x4D\x56", "\x43\x46\x4F\x4B\x4C", 8);
                                                                                                    admin
                                                                                        // root
add_auth_entry("\x43\x46\x4F\x4B\x4C", "\x43\x46\x4F\x4B\x4C", 7);
                                                                                                    admin
                                                                                        // admin
add auth entry("\x50\x4D\x4D\x56", "\x1A\x1A\x1A\x1A\x1A\x1A\, 6);
                                                                                        // root
                                                                                                    888888
add_auth_entry("\x50\x4D\x4D\x56", "\x5A\x4F\x4A\x46\x4B\x52\x41", 5);
                                                                                        // root
                                                                                                    xmhdipc
add_auth_entry("\x50\x4D\x4D\x56", "\x46\x47\x44\x43\x57\x4E\x56", 5);
                                                                                        // root
                                                                                                    default
add auth entry("\x50\x4D\x56", "\x48\x57\x43\x4C\x56\x47\x41\x4A", 5);
                                                                                                    juantech
                                                                                        // root
add auth entry("\x50\x4D\x4D\x56", "\x13\x10\x11\x16\x17\x14", 5);
                                                                                        // root
                                                                                                    123456
add_auth_entry("\x50\x4D\x4D\x56", "\x17\x16\x11\x10\x13", 5);
                                                                                                    54321
                                                                                        // root
add auth entry("\x51\x57\x52\x52\x4D\x50\x56", "\x51\x57\x52\x52\x4D\x50\x56", 5);
                                                                                                    support
                                                                                        // support
add auth entry("x50x4Dx4Dx56", "", 4);
                                                                                        // root
                                                                                                    (none)
add_auth_entry("\x43\x46\x4F\x4B\x4C", "\x52\x43\x51\x55\x4D\x50\x46", 4);
                                                                                        // admin
                                                                                                    password
add_auth_entry("\x50\x4D\x4D\x56", "\x50\x4D\x4D\x56", 4);
                                                                                        // root
                                                                                                    root
add auth entry("\times50\times4D\times56", "\times13\times10\times11\times16\times17", 4);
                                                                                        // root
                                                                                                    12345
add_auth_entry("\x57\x51\x47\x50", "\x57\x51\x47\x50", 3);
                                                                                        // user
                                                                                                    user
add auth entry("x43x46x4Fx4Bx4C", "", 3);
                                                                                                    (none)
                                                                                        // admin
add auth entry("x50x4Dx4Dx56", "x52x43x51x51", 3);
                                                                                        // root
                                                                                                    pass
add_auth_entry("\x43\x46\x4F\x4B\x4C", "\x43\x46\x4F\x4B\x4C\x13\x10\x11\x16", 3);
                                                                                                    admin1234
                                                                                        // admin
```


Scanning the Internet

```
while (o1 == 127 ||

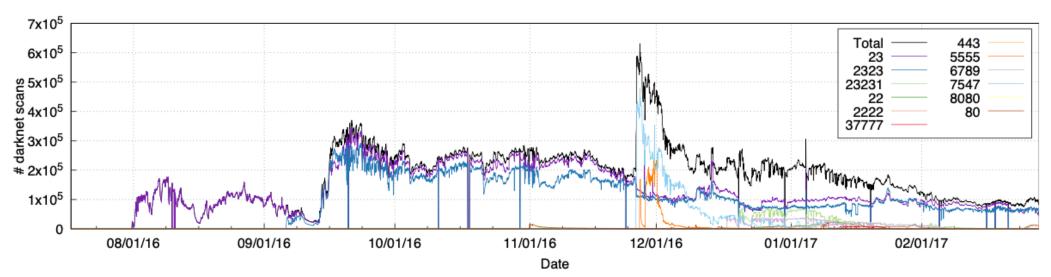
    Loopback

                                                   // 127.0.0.0/8
      (o1 == 0) | |
                                                                        - Invalid address space
                                                   // 0.0.0.0/8
                                                  // 3.0.0.0/8 - General Electric Company
// 15.0.0.0/7 - Hewlett-Packard Company
      (01 == 3) | |
      (o1 == 15 \mid \mid o1 == 16) \mid \mid
      (o1 == 56) | |
                                                   // 56.0.0.0/8 - US Postal Service
      (o1 == 10) | |
                                                   // 10.0.0.0/8
                                                                         - Internal network
      (o1 == 192 && o2 == 168) ||
                                                  // 192.168.0.0/16 — Internal network
      (01 == 172 \&\& 02 >= 16 \&\& 02 < 32) |  // 172.16.0.0/14 - Internal network
      (01 == 100 \&\& 02 >= 64 \&\& 02 < 127) | 
                                                   // 100.64.0.0/10
                                                                         - IANA NAT reserved
      (o1 == 169 \&\& o2 > 254) | |
                                                   // 169.254.0.0/16 - IANA NAT reserved
      (01 == 198 \&\& 02 >= 18 \&\& 02 < 20) | |
                                                  // 198.18.0.0/15
                                                                         - IANA Special use
                                                   // 224.*.*.*+
                                                                         - Multicast
      (o1 >= 224) | |
      (01 == 6 \mid \mid 01 == 7 \mid \mid 01 == 11 \mid \mid
      o1 == 21 || o1 == 22 || o1 == 26 ||
      o1 == 28 || o1 == 29 || o1 == 30 ||
      o1 == 33 || o1 == 55 || o1 == 214 ||
      01 == 215
                                                    // Department of Defense
);
```



Scanning the Internet (2)

```
for (i = 0; i < SCANNER_RAW_PPS; i++)</pre>
    struct sockaddr_in paddr = {0};
    struct iphdr *iph = (struct iphdr *)scanner_rawpkt;
    struct tcphdr *tcph = (struct tcphdr *)(iph + 1);
    iph->id = rand_next();
    iph->saddr = LOCAL ADDR;
    iph->daddr = get_random_ip();
    iph->check = 0;
    iph->check = checksum_generic((uint16_t *)iph, sizeof (struct iphdr));
    if (i % 10 == 0)
        tcph->dest = htons(2323);
    else
        tcph->dest = htons(23);
    tcph->seq = iph->daddr;
    tcph->check = 0;
    tcph->check = checksum_tcpudp(iph, tcph, htons(sizeof (struct tcphdr)), sizeof (struct tcphdr));
    paddr.sin family = AF INET;
    paddr.sin_addr.s_addr = iph->daddr;
    paddr.sin_port = tcph->dest;
```

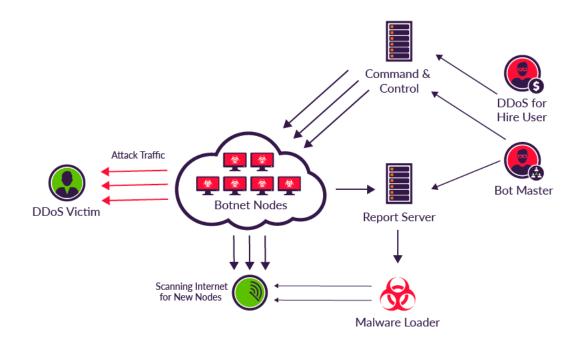

Mirai inner working


- Rapid stateless scanning: 23 and 2323 TCP SYN (seq num)
- On connection: start brute force login (10 attempts)
- Report successful login to hardcoded report server
- (Async) infect with loader program.
- Close ports and perform AV cleanup
- C2 await commands

Mirai from a network perspective

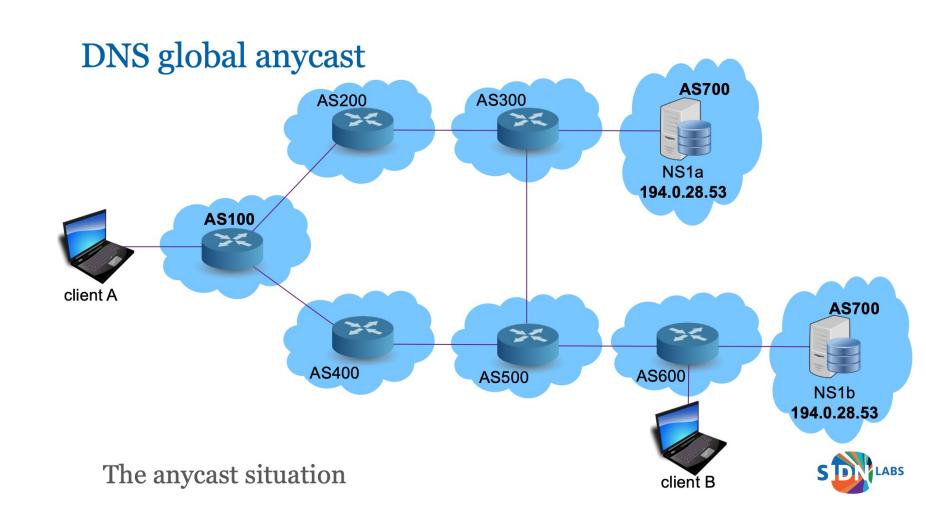
- Active scanning: (Censys)
- IoT Honeypot: 1028 unique samples and 67 C2 domains
- Passive and Active DNS to find more C2 servers
- C2 milker: 15.000 attacks

Question


What are the challenges to analyze and/or mitigate Mirai attacks?

Mirai DDoS attacks

- Volumetric, TCP State Exhaustion, Application-level attacks.
- Most targets in USA (50%), France, UK.
- Games
- Mirai C2 servers
- High-profile targets: Krebs on Security, Lonestar Cell (Liberia), Dyn.



Mitigation of DDoS attacks

DDoS scrubbing service

DNS (Dyn): anycast

Lessons learned

Simple attack, lots of damage

Automatic updates

Device identification on network

IoT end-of-life devices (externality)

Connecting datasets gives a lot of information!

Question

What was the biggest 'contribution' of Mirai in your opinion?

Measurement and Analysis of Hajime, a Peer-to-peer IoT Botnet

S. Herwig, K. Harvey, G. Hughey, R. Roberts, and D. Levin, "Measurement and Analysis of Hajime, a Peer-to-peer IoT Botnet", Network and Distributed Systems Security (NDSS) Symposium 2019, San Diego, CA, USA, February 2019

Focus

- The important differences between Mirai and Hajime
- Backscatter data from a root DNS server
- Discussions

The 3 big differences

- Peer-to-Peer instead of centralized command & control
- More exploits based on the Vault7 leak
- Custom protocol to spread the malware

No malicious activity had been recorded.
 Does this count as difference?

Architecture	Port	Service	Method
mipseb	23, 5358	Telnet	credentials
	7547	TR-064	CVE-2016-10372
	many	HTTP	Chimay-Red
	80	HTTP	CVE-2018-10561,-10562
mipsel	23, 5358	Telnet	credentials
-	7547	TR-064	CVE-2016-10372
arm7	23, 5358	Telnet	credentials
	81	HTTP	GoAhead-Webs credentials
	81	HTTP	Cross Web Server RCE
arm6	23,5358	Telnet	credentials
arm5	23, 5358	Telnet	credentials
	9000	MCTP	CVE-2015-4464

TABLE I: Hajime's architecture-specific access methods and the corresponding ports scanned

P2P Mechanisms

- DHT (Kademlia) based.
 - Known from e.g. BitTorrent
 - Traditional BitTorrent connections relied on trackers to exchange seeder/leecher information
- Basically, a distributed Key-Value storage
 - Key is filename concatenated with current day' timestamp
 - Values are IPs which are infected with Hajime and allow for payload downloads

Question

• Since the key is computed based on the current day's timestamp, and bots may have incorrectly synchronized clocks, we look up keys for a five-day range (two days in the past through two days in the future).

Do you think that this range will catch all devices?

Malicious activity(?)

• On infection, Hajime closes at least the following ports: 23 (Telnet), 5358 (WSDAPI), 5555 (Oracle Web Center Content/Freeciv), and 7547(CWMP)

Do you remember which port/service was used by Mirai to infect devices?

• Small discussion: What do you think of the motive of the Hajime-bot author?

Custom uTorrent Transport Protocol

- Mirai was enumerable/detectable due to its custom TCP sequence field
- Hajime uses unique cryptographic public keys to allow for a count of infected hosts
- Some churn expected due to recreation of the public key, during updates to the .i module
- Still a stronger identifier, compared to weak identifiers such as IPs (ie. due to carrier grade NAT)

DNS backscatter data

- Based on trying to inject shell-commands into a NTP configuration file
- Vulnerable devices won't sanitize the input and then execute the commands, infecting the device.
- Remember how DNS lookups work? Invalid queries will be sent to the root DNS servers
 - Conveniently the researchers of the paper operate one of the root DNS servers

Question

- Do you think that Hajime is still active?
 - A. Yes
 - B. No

Demo

- 1. UTC timestamp
- 2. payload name
- 3. date used as input for computing the payload's DHT hash ID
- 4. payload DHT ID (the hash we lookup or announce on the DHT)
- 5. "seeder" or "leecher" (are we collecting seeders or leechers, respectively)
- 6. IPv4 address of seeder/leecher bot
- 7. port number of seeder/leecher bot

Demo (Backup)

```
1620769710 atk.mipseb.1506215619 2021-05-09 1173332a85f47e1a40b15f3d77a550ff342442c2 seeder 98.43.129.55 62289
1620769710 atk.mipseb.1506215619 2021-05-09 1173332a85f47e1a40b15f3d77a550ff342442c2 seeder 109.148.173.191 62289
1620769710 atk.mipseb.1506215619 2021-05-09 1173332a85f47e1a40b15f3d77a550ff342442c2 seeder 79.161.52.82 62289
1620769710 atk.mipseb.1506215619 2021-05-09 1173332a85f47e1a40b15f3d77a550ff342442c2 seeder 24.88.23.242 62289
1620769710 atk.mipseb.1506215619 2021-05-09 1173332a85f47e1a40b15f3d77a550ff342442c2 seeder 69.112.168.236 62289
1620769710 atk.mipseb.1506215619 2021-05-09 1173332a85f47e1a40b15f3d77a550ff342442c2 seeder 108.173.178.204 62289
1620769710 atk.mipseb.1506215619 2021-05-09 1173332a85f47e1a40b15f3d77a550ff342442c2 seeder 71.210.33.221 62289
1620769710 atk.mipseb.1506215619 2021-05-09 1173332a85f47e1a40b15f3d77a550ff342442c2 seeder 24.115.107.208 62289
1620769710 atk.mipseb.1506215619 2021-05-09 1173332a85f47e1a40b15f3d77a550ff342442c2 seeder 176.14.243.44 62289
1620769710 atk.mipseb.1506215619 2021-05-09 1173332a85f47e1a40b15f3d77a550ff342442c2 seeder 71.190.197.164 62289
1620769710 atk.mipseb.1506215619 2021-05-09 1173332a85f47e1a40b15f3d77a550ff342442c2 seeder 70.119.82.44 62289
1620769710 atk.mipseb.1506215619 2021-05-09 1173332a85f47e1a40b15f3d77a550ff342442c2 seeder 184.83.113.35 62289
1620769710 atk.mipseb.1506215619 2021-05-09 1173332a85f47e1a40b15f3d77a550ff342442c2 seeder 137.25.255.15 62289
1620769710 atk.mipseb.1506215619 2021-05-09 1173332a85f47e1a40b15f3d77a550ff342442c2 seeder 185.108.162.49 62289
1620769710 atk.mipseb.1506215619 2021-05-09 1173332a85f47e1a40b15f3d77a550ff342442c2 seeder 176.110.136.21 62289
1620769710 atk.mipseb.1506215619 2021-05-09 1173332a85f47e1a40b15f3d77a550ff342442c2 seeder 62.46.102.115 62289
1620769710 atk.mipseb.1506215619 2021-05-09 1173332a85f47e1a40b15f3d77a550ff342442c2 seeder 67.251.129.160 62289
1620769711 1173332a85f47e1a40b15f3d77a550ff342442c2 5.139.3.14:49978 117710404a4f6e018508fce5f2855ef7b4b63620 115
1620769711 1173332a85f47e1a40b15f3d77a550ff342442c2 144.91.111.37:9613 1173332a85f47e1a40b15f3d77a550fa00c24bc9 18
1620769711 1173332a85f47e1a40b15f3d77a550ff342442c2 144.91.111.37:9613 1173332a85f47e1a40b15f3d77a550fa00c24bc9 47
```


Demo (Backup)

```
1620769773 .i.armv6l.1509400182 2021-05-11 2f9f80b52e7df032562bfdc6174733006fb978e9 seeder 174.20.138.204 62289
.620769773 .i.armv6l.1509400182 2021-05-11 2f9f80b52e7df032562bfdc6174733006fb978e9 seeder 79.136.72.19 62289
1620769774 2f9f80b52e7df032562bfdc6174733006fb978e9 144.91.111.37:9613 2f9f80b52e7df032562bfdc6174733fa00c24bc9 173.46.242.130 62289
1620769774 2f9f80b52e7df032562bfdc6174733006fb978e9 144.91.111.37:9613 2f9f80b52e7df032562bfdc6174733fa00c24bc9 154.45.216.220 62289
#1620769774 2f9f80b52e7df032562bfdc6174733006fb978e9 2f9f80b52e7df032562bfdc6174733fa00c24bc9 144.91.111.37:9613 Total seeders: 5 new
1620769785 .i.mipseb.1524631409 2021-05-11 5b28b53bc218c21fdd3ec9b11e696c137a7420f8 seeder 174.17.14.156 62289
1620769785 .i.mipseb.1524631409 2021-05-11 5b28b53bc218c21fdd3ec9b11e696c137a7420f8 seeder 64.121.214.41 62289
1620769785 .i.mipseb.1524631409 2021-05-11 5b28b53bc218c21fdd3ec9b11e696c137a7420f8 seeder 79.136.72.19 62289
1620769785 .i.mipseb.1524631409 2021-05-11 5b28b53bc218c21fdd3ec9b11e696c137a7420f8 <u>seeder 188.17.175.246 62289</u>
1620769785 .i.mipseb.1524631409 2021-05-11 5b28b53bc218c21fdd3ec9b11e696c137a7420f8 seeder 81.217.115.184 62289
1620769786 5b28b53bc218c21fdd3ec9b11e696c137a7420f8 144.91.111.37:9613 5b28b53bc218c21fdd3ec9b11e696cfa00c24bc9 188.17.175.246 62289
1620769786 5b28b53bc218c21fdd3ec9b11e696c137a7420f8 144.91.111.37:9613 5b28b53bc218c21fdd3ec9b11e696cfa00c24bc9 81.217.115.184 62289
#1620769786 5b28b53bc218c21fdd3ec9b11e696c137a7420f8 5b28b53bc218c21fdd3ec9b11e696cfa00c24bc9 144.91.111.37:9613 Total seeders: 5 new |
1620769787 .i.mipseb.1522574410 2021-05-12 09f5299a344afa50742c3f29ac7d9a163fc04b94 seeder 5.146.192.252 62289
1620769788 09f5299a344afa50742c3f29ac7d9a163fc04b94 144.91.111.37:9613 09f5299a344afa50742c3f29ac7d9afa00c24bc9 5.146.192.252 62289
#1620769788 09f5299a344afa50742c3f29ac7d9a163fc04b94 09f5299a344afa50742c3f29ac7d9afa00c24bc9 144.91.111.37:9613 Total seeders: 1 new |
```


Lessons learned

- 1. Command-And-Control impossible to take down, without also affecting legitimate users
- 2. Multiple identifiers can help in mapping the extent of a botnet (uTP keys, backscatter data)
- 3. Abandoned botnets float through the Internet, like satellite debris around earth's orbit
- 4. (By proxy), manufacturers treat their security division poorly

Discussion: Botnet

Why would the cleanup of IoT botnets take longer than for traditional bots?

Key takeaways

• Analyzing botnets properly requires many vantage points and datasets.

• Mirai 'shook the world' and showed potential of IoT botnets in terms of DDoS attacks.

• By leveraging an established decentralized communication protocol for command & control, Hajime circumvents traditional take-down measures for botnets.

Lecture feedback

To what extent do you think you will be able to discuss how IoT botnets (Mirai, Hajime) are organized and spread their infections.

Discussion & feedback

Next lecture: Wed May 17, 10:45-12:30 VR 583

