Lecture #8: IoT security in non-carpeted areas

Cristian Hesselman, Elmer Lastdrager, <u>Ramin Yazdani</u>, Etienne Khan, <u>Ting-Han Chen</u>

University of Twente | June 5, 2023

Colonial Pipeline, May 2021

https://www.bbc.com/news/technology-57063636

Today's agenda

- Admin
- Introduction
- Paper #1: security in LoraWAN networks
- Paper #2: Traffic Signal Control
- Feedback

Admin

Oral exams

- June 21st, 22nd, 26th, 28th, 30th, July 4th
- Sign up for a timeslot through Canvas
- 45 minutes
- Details: https://courses.sidnlabs.nl/ssi-2023/#oral-exam

Schedule

No.	Date	Contents
1	Apr 26	Course introduction
2	May 3	Lecture: IoT and Internet Core Protocols
3	May 10	Lecture: IoT Botnet Measurements 1
4	May 17	Lecture: IoT Edge Security Systems
5	May 24	Lecture: IoT Device Security
6	May 31	Lecture: IoT Botnet Measurements 2
7	Jun 1	Guest lecture #1: Naval Systems, Dr. Sorin Iacob, Thales
8	Jun 5	Lecture: IoT Security in Non-Carpeted Areas
9	Jun 12	Guest lecture #2: Product Security for Bosch (IoT) products, Stephan van Tienen, Bosch Security Systems
10	Jun 14	Lecture: IoT Honeypots (re-sit)

Important dates

- Two summaries per lecture: before the lecture (07:00 CEST) in which the papers will be discussed
- Lab report (PDF) and required files: Sun June 23, 2023, 23:59 CEST
- All to be submitted through CANVAS

Where are you with your lab assignment?

- Still trying to find the instructions on the SSI site
- Designing measurement setup
- Analyzing measurements
- Writing lab report
- Just need to click "submit" in Canvas

Official feedback forms

- Survey by EEMCS Quality Assurance folks
- Will be sent out on in the next week or so
- Please fill it out, your feedback is **crucial** for us to further improve the course!
- Next year's students will thank you for it ;-)
- We'll let you know how we handled your feedback

Eraojo	EEMCS Maste	r Student Experience Question	nnaire Coro	na	Electric Paper
Iniversity of Twente	Quality	Assurance EEMCS			
aculty of EEMCS	0			UNIVENSI	TETT TWENTE.
ark as shown:	Please use a ball-poin Please follow the exar	t pen or a thin felt tip. This form will be nples shown on the left hand side to h	e processed au elp optimize ti	itomatically. ne reading results	s.
1. Administrative	ramme do vou attend	2 Applied	Busi	ness	Computer Science
1.1 Which master progr	ramme do you attend	Mathematics	Infor	mation	
		Electrical Engineering Internet Science	Emb Syst	edded ems ems & Control	 Interaction Technology Other
1.2 Which other Master	r programme do you a	and rechnology attend?	/		
Applied Physics Chemical Engine Construction Ma	eering inagement &	 Biomedical Engineering Civil Engineering & Manage Educational Science & Tech 	ement nology	Business Ac Communica Environmen	Iministration tion Science tal & Energy
European Studie	es [Geo-information Science an	nd 🗌	Geographic	al Information
Health Sciences	. [Industrial Design Engineeri	ng 🗆] Industrial Er Managemer	ngineering &
Mechanical Engi Mechanical Engi	ineering [Methodology & Statistics fo Behavioural, Biomedical & Sciences	r the Social] Nanotechno	ology
Philosophy of So Technology & So	cience, [Psychology		Public Admi	nistration
Science Educati Communication	ion and [Social Sciences and Huma Education	nities	Spatial Engi	ineering
 Sustainable Ene At which university 	are you primary enro	Technical Medicine Iled in Diversity of	Delf] Water Techr University	ology
(hoofdinschrijving)?	?	Twente	of Te	echnology	University of Technology
		Other			
2. Online/hybrid educ	cation			- Excellent	D N/A
education as offered	d in this course?				
2.2 Which teaching act	ivities helped you the	best?			
2.3 Which teaching act	ivities worked counter	roroductive for you?			
2.5 Which teaching act	Wiles worked counter				
L					
					31.05.2021, Page 1
261U0P1PL0V0					
261U0P1PL0V0					

Introduction to today's lecture

Motivation for today: IoT goes beyond carpeted areas

[Lora] X. Wang, E. Karampatzakis, C. Doerr, and F.A. Kuipers, "Security Vulnerabilities in LoRaWAN", Proc. of the 3rd ACM/IEEE International Conference on Internet-of-Things Design and Implementation (IoTDI), Orlando, Florida, USA, April 17-20, 2018

[Traffic] Qi Alfred Chen, Yucheng Yin, Yiheng Feng, Z. Morley Mao, Henry X. Liu, "Exposing Congestion Attack on Emerging Connected Vehicle based Traffic Signal Control", Network and Distributed Systems Security (NDSS) Symposium 2018, Feb 2018, San Diego, CA, USA

Today's learning objective

- After the lecture, you will be able be able to discuss technologies for non-consumer IoT applications ("non-carpeted areas"), specifically:
 - Security vulnerabilities of LoraWAN and their mitigations
 - Security risks of CV-based traffic light signaling
- Contributes to SSI learning goal #1: "Understand IoT concepts and applications, security threats, technical solutions, and a few relevant standardization efforts in the IETF"

"Security Vulnerabilities in LoRaWAN"

3rd ACM/IEEE International Conference on Internet-of-Things Design and Implementation (IoTDI), Orlando, Florida, USA, April 17-20, 2018

Did you hear about Lora and its applications?

LoraWAN: Low-power wide-area network, low bitrate comms

LoraWAN: In a Workshop

LoraWAN: Self-made version

LoraWAN: Long Distance, 832km as world record

公尺 = Meter, Best Record: 8km

Source: https://www.intelligentagri.com.tw/en

Deutsche Bahn is using LoraWAN, too

Picture: Johan Stokking, The Thing Industries Smart Train Stations with LoRaWAN - Olga Willner & Oliver Brandmüller - The Things Conference 2019 - YouTube

21

Okay, how's the paper?

Let's Start!

Management plane

- Key derivation (symmetric)
- Device enrollment protocol (OTA and "personalized")
- Over the air firmware updates
- Data plane (packet forwarding)
 - Encryption of LoraWAN payloads
 - Message integrity verification
 - Replay protection

What's the root of trust in Over The Air Activation(OTAA)?

- 1) AppSkey
- 2) NwkSkey
- 3) Appkey
- 4) NwkKey

LoraWAN key derivation

Picture: Johan Stokking, The Thing Industries

Which attack you like the most?

- 1. Replay attack for ABP-activated nodes
- 2. Eavesdropping
- 3. Bit-Flipping Attack
- 4. ACK spoofing
- 5. LoRa class B attacks

Discussion: denial of service through replay

Fig. 4. An example of a replay attack for ABP.

	time	counter	port	dev id	
	▲ 16:16:00	13	6	22	34 34 37 20 30 32 34 00
	▲ 16:15:25	12	61	22	34 39 36 20 30 32 34 00
	▲ 16:14:51	11	20	22	35 34 33 20 30 32 31 00
Injected message	▲ 16:08:49	10	49	22	34 38 30 20 30 32 31 00
0	▲ 16:08:34	0	71	22	31 39 32 20 30 32 32 00
	▲ 16:07:59	10	49	22	34 38 30 20 30 32 31 00
1	▲ 16:06:16	7	41	22	35 32 37 20 30 32 33 00
	▲ 16:05:42	6	61	22	36 38 37 20 30 32 34 00
	▲ 16:05:07	5	134	22	34 39 34 20 30 32 33 00
	▲ 16:03:59	3	83	22	34 34 38 20 30 32 32 00

Fig. 7. Log file of the victim's server.

Discussion: known-plaintext attack

Discussion: Eavesdropping

 $C_1 \oplus C_2 = (P_1 \oplus K) \oplus (P_2 \oplus K)$ $= P_1 \oplus P_2 \oplus \underbrace{(K \oplus K)}_{\text{cancels out}}$ $= P_1 \oplus P_2.$

Symbol	Truth Table			
	В	А	Q	
Action	0	0	0	
B O Q	0	1	1	
2-input Ex-OR Gate	1	0	1	
	1	1	0	
Boolean Expression $Q = A \oplus B$	A OR B but NOT BOTH gives Q			

Is it worth it to get the simple messages such as temperature or humidity? Is it important to protect those content?

Why does LoraWAN not support end-to-end message integrity?

- 1) LoraWAN is a link-level technology
- 2) LoraWAN messages are encrypted
- 3) LoraWAN does not support application-level MICs
- 4) LoraWAN was not of attackers' interests

Discussion: proposed solution using 2 MICs

Discussion: ACK spoofing

How do the authors propose to extend ACK messages to tackle this problem?

- 1) Include a nonce signed by the gateway's private key
- 2) Include the frame counter value of the uplink messages
- 3) Accept the risk because adding more info to ACK's would be too expensive
- 4) Include cryptographic checksum that covers the uplink packet

Discussion: Class B attacks - battery draining

Let's look at the version history of LoraWAN

F. Hessel, L. Almon, and M. Hollick, 'LoRaWAN Security: An Evolvable Survey on Vulnerabilities, Attacks and their Systematic Mitigation', ACM Trans. Sens. Netw., vol. 18, no. 4, p. 70:1-70:55, Mar. 2023, doi: 10.1145/3561973.

Key takeaways

- Designing network security protocols is challenging
- Attacks can have a physical component, such as jamming or device resets
- Highlights the importance of an open protocol development process (cf. IETF)

Discussion (if time permits)

- What would you do in the development process to make LoraWAN more secure? As an Engineer
- How would you update the protocol of LoraWAN regarding the features and security? As an Operator/Manufacturer

Coffee break

"Exposing Congestion Attack on Emerging Connected Vehicle based Traffic Signal Control" Network and Distributed Systems Security (NDSS) Symposium, San Diego, CA, USA, February 2018

Your opinion

WWW. PHDCOMICS. COM

Similar hack on Google maps

Berlin artist uses 99 phones to trick Google into traffic jam alert

Google Maps diverts road users after mistaking cartload of phones for huge traffic cluster

Google Maps Hacks by Simon Weckert.

Source: https://www.theguardian.com/technology/2020/feb/03/berlin-artist-uses-99-phones-trick-google-maps-traffic-jam-alert

Basic Safety Messages

"The basic safety message contains vehicle safety-related information that is periodically broadcast to surrounding vehicles." [SAE J2735]

H. Hasrouny et al., "VANet security challenges and solutions: A survey"

BasicSafetyMessa	ge ::= SEQUENCE {			
Part I msgID D	SRCmsgID,	-	•	l byte
Sent as a blobl B	single octet blob SMblob,			
 The blob c	consists of the following	g 38	pa	acked bytes:
msgCnt	MsgCount,	- X -	1	byte
1d secMark	TemporaryID, DSecond,	-X-	42	bytes bytes
pos P lat long elev accuracy motion M speed heading angle accelSet	PositionLocal3D, Latitude, Longitude, Elevation, PositionalAccuracy, Notion. TransmissionAndSpeed, Heading, SteeringWheelAngle AccelerationSet4Way,	- X - - X -	4424 2217	bytes bytes bytes bytes bytes byte bytes bytes
control C brakes	Control, BrakeSystemStatus,	- X -	2	bytes
basic W size	VehicleBasic, VehicleSize,	- x -	3	bytes
Part II, s Part II.	ent as required			
safetyExt status	VehicleSafetyExtension VehicleStatus	OPT OPT	101	NAL, NAL,

Tsai, Ming-Fong, et al. "Cooperative emergency braking warning system in vehicular networks."

Problem source

Hardware limitations:

- > Signal plan needs to be ready in a limited time
- > Limited number of stages
- > Not all vehicles served
- > A plan with least unserved vehicles is chosen, then one with least total delay.

Penetration rate:

> Not all cars are equipped with OBUs.

Spoofed data flow

- S1: Arrival time and phase spoofing (full deployment and transition period)
- **S2:** Queue length manipulation (transition period only)

Attack effectiveness

• Full deployment:

2 stage: last vehicle advantage

5 stage: open skipped phase + extend green light

Transition period

2 stage: last vehicle advantage (more impact because of the tgmax of preceding phases) + adding to queue length

5 stage: open skipped phase + extend green light

Attack vectors in VANET

- This paper is specifically on congestion attacks. What other attacks in vehicular ad-hoc networks (VANET) can you think of?
- Can we disrupt traffic signal control in a different way?

Attack vectors in VANET

Table 2

Classification of Attacks based on four categories and VANET communication mode.

Attacks on	Attack name	Attack on VANET communication mode
Wireless	- Location Tracking	V2V
linterface	- D03, DD03	
	- Sybli Malware and snam	
	- Marware and Span. Tuppelling Plackhole	
	- Tufffeling, Blackhole,	
	MiM	
	- WIIVI Brute force	
Hardware and	- Blute loice	VOV VOI
naluwale allu	- D05	V2V, V2I
Software	- Spooling and lorgery.	
	info (CPS spoofing)	
	Message suppression/	
	alteration/fabrication	
	- Penlay	
	– Masquerade	
	- Masqueraue	
	- Marware and Spann	
	- WIIVI Brute force	
	- blute loice	VOV
	- Sybli Injection of erroneous	V2V
	= injection of enoneous	
	Tamporing bardware	
	- Tampering Hardware	
	- Routing, Blackhole,	
	Timing	
Sancors input	- Thing.	VOV
in vehicle	= cheating with position	V2V
III venicie	Illusion attack	
	- IIIUSIOII dttdck	
Infractructure	- Jamming attack	VOL and VOV
Infrastructure	- Session nijacking	
	- DOS, DDOS	
	- Onautionized access	
	- rampering naroware Popudiation	
	- Reputition	
	- spooling, impersonation	
	or masquerade	

Source: H. Hasrouny et al.,

"VANet security challenges and solutions: A survey"

Malfunction management unit

- Older setup where only road sensor data is in use:
 - "With direct access to the traffic cabinet, an attacker would be able to remove fail-safe equipment and perform dangerous attacks (e.g. four-way green lights) in addition to the attacks described in this paper." [1]
 - $\circ~$ Still possible to perform a DoS by setting all lights to red.

Source: B. Ghena et al., "Green Lights Forever: Analyzing the Security of Traffic Infrastructure"

[1] B. Ghena et al., "Green Lights Forever: Analyzing the Security of Traffic Infrastructure"

Region assignment in PR<95%

Was this clear?

"The algorithm first finds the stopped equipped vehicle that is the farthest from the lane stop bar and uses its location as the end of the queuing region. The slow-down region started right after the queuing region, and the algorithm uses the equipped vehicle's trajectory data to judge whether it is slowing down due to an unequipped front vehicle based on a car-following model. After the slowdown region begins the free-flow region."

What if there are non-equipped cars after last equipped stopped car?

Exploit construction

> Yellow signal start

> wait 1 sec (5 secs left)

> estimate locations on map for 5 secs later

> run I-SIG without spoofing (4 secs for running I-SIG without and with spoofing in parallel, 1 sec is spared for BSM transition delay, etc.)

Attack evaluation

E1: Congestion attack for two-stage planning. Consistent results with vulnerability analysis. **E2:** Congestion attack for five-stage planning in the full deployment period. Lower performance than vulnerability analysis, due to estimation errors nullifying attach effect.

E3: Congestion attack for five-stage planning in the transition period. Higher performance than vulnerability analysis due to cumulative blocking effect.

CV	Full deployment		Transition period					
deployment	100% PR		75% PR		50% PR		25% PR	
COP config.	2-S	5-S	2-S	5-S	2-S	5-S	2-S	5-S
Exploit	E1	E2	E1	E3	E1	E3	E1	E3
Ave. delay	68435.4	4695.9	64008.0	187746.0	66797.4	197410.0	56618.0	146685.0
inc. (s) & %	66.7%	4.8%	61.7%	181.6%	64.2%	(193.3%)	46.2%	133.2%

Cumulative attack

"As shown, the delay under attack usually has an increase when the delay without attack increases. This is because when the approach is more congested without attack due to a temporarily higher demand, the congestion attack can further escalate such congestion."

Defense mechanisms?

- More powerful RSU hardware
- Returning sanity check to RSUs (traffic lights) rather than purely relying a self-declaration (e.g., using cameras and infrastructure-side sensors)
- Encrypted BSM?

65

•

...

Key Takeaways

• Security backdoors might be introduced due to implementation choices.

- Unavoidable transition period should be considered in a protocol design.
- Some sanity check on BSMs can help reduce the attack vector, e.g., use of extra road sensors as input for the traffic signaling.

Feedback

Today's objective revisited

- After the lecture, you will be able be able to discuss technologies for non-consumer IoT applications ("non-carpeted areas"), specifically:
 - Security vulnerabilities of LoraWAN and their mitigations
 - Security risks of CV-based traffic light signaling
- Contributes to SSI learning goal #1: "Understand IoT concepts and applications, security threats, technical solutions, and a few relevant standardization efforts in the IETF"

Volg ons

NI SIDN.nl
@SIDN
in SIDN

Discussion & feedback

Next lecture: **Mon Jun 12 (guest lecture), 10:45-12:30** Topic: Product Security for Bosch (IoT) products Room: RA 3334

