Lecture #6: IoT security in non-carpeted areas

Antonia Affinito, Etienne Khan, <u>Ting-Han Chen</u>, and <u>Cristian Hesselman</u>

University of Twente | June 12, 2024

Colonial Pipeline, May 2021

https://www.bbc.com/news/technology-57063636

Today's agenda

- Admin
- Introduction to today's lecture
- Paper #1: security in LoraWAN networks
- Paper #2: privacy of opportunistic networks
- Feedback

Admin

Important dates

- Lab report (PDF) and required files: Wed Jun 19, 9 AM CEST
- Written exam: Wed July 3, 13:45-15:45
- Alle summaries and lab reports to be submitted through CANVAS

please speak up!

Schedule

Lecture	Date	Contents
R1	May 1	Course introduction
R2	May 8	IoT and Internet Core Protocols
G1	May 14	How the core of the Internet works
R3	May 15	IoT Edge Security Systems
	May 22	No lecture (as several of your teachers will be in Dresden :)
R4	May 29	IoT Botnet Measurements 1
R5	Jun 5	IoT Botnet Measurements 2
R6	Jun 12	IoT Security in Non-Carpeted Areas
G2	Jun 14	Security in the new digital world – the Internet of Things
R7	Jun 19	IoT Device Security
	Jun 26	No lecture (so you can study for the exam :)
		OF TWENTE.

Official feedback forms

- Survey by EEMCS Quality Assurance folks
- Will be sent out on in the next week or so
- Please fill it out, your feedback is **crucial** for us to further improve the course!
- Next year's students will thank you for it ;-)
- We'll let you know how we handled your feedback

Even ETM	C Mantor Stud	t Exposiones Questions	anire (00000	Electric Paper	
EVaSys EEM	Ouality Assuran	t Experience Question	naire C	orona	Constituention	
aculty of EEMCS	()	LE LEMOS		UNIVERSI	TEIT TWENTE.	
	a ball-point pen or a	hin felt tin. This form will be	nncesse	ed automatically		
prrection:	ow the examples show	n on the left hand side to he	lp optimi	ize the reading results	3.	
1 Administrative						
1.1 Which Master programme do y	ou attend?	Applied Mathematics		Business nformation Fechnology	Computer Science	
		Electrical Engineering		Embedded	Interaction Technology	
		Internet Science and Technology		Systems & Control	☐ Other	
1.2 Which other Master programme Applied Physics	e do you attend?	edical Engineering		Business Ac	dministration	
Chemical Engineering Construction Management & Engineering		ngineering & Manager Itional Science & Techn	nent ology	 Communica Environmen Managemer 	ition Science ital & Energy nt	
European Studies	Geo-i Earth	nformation Science and Observation	ł	Geographic Managemer	al Information nt and Applications	
Health Sciences	🗌 Indus	trial Design Engineerin	g	Industrial Er Managemer	ngineering & nt	
Mechanical Engineering	Metho Behar Scien	odology & Statistics for vioural, Biomedical & S ces	the ocial	Nanotechno	logy	
Philosophy of Science, Technology & Society	Psyct	ology		Public Admi	nistration	
Science Education and Communication	Socia Educa	I Sciences and Humani ation	ities	Spatial Engi	ineering	
Sustainable Energy Technol	ogy 🗌 Techr	ical Medicine		Water Techr		
(hoofdinschrijving)?	nary enrolled in	Twente		of Technology	University of Technology	
		Other			3,	
2. Online/hybrid education						
 2.1 How did you experience the onleducation as offered in this could be achieved activities before 2.2 Which teaching activities before 	line/hybrid Insu rse? d you the best?	ficient 🗌 🔲 🗌		Excellent	t 🗆 N/A	
	a joa alo boot.					
2.3 Which teaching activities worke	ed counterproduct	ve for you?				
5261U0P1PL0V0					31.05.2021, Page 1/2	
		0E	T\	A/ENIT	- -	PN
		UF			L .	

Introduction to today's lecture

https://www.youtube.com/watch?v=-7xg3DQyOXw

Example: remote truck driving

Motivation for today: IoT goes beyond carpeted areas

But first: group discussion for a broader perspective

- What security and privacy requirements does IoT in "non-carpeted areas" put on the underlying networks?
- What would the impact be on software engineering, hardware engineering, regulation, liability, and so forth?
- Split up in groups of around 5 and discuss!
- Take 5 minutes 😳

So that's why we selected today's papers for you

[Lora] X. Wang, E. Karampatzakis, C. Doerr, and F.A. Kuipers, "Security Vulnerabilities in LoRaWAN", Proc. of the 3rd ACM/IEEE International Conference on Internet-of-Things Design and Implementation (IoTDI), Orlando, Florida, USA, April 17-20, 2018

[Sidewalk] T. Despres, S. Patil, A. Tan, J.-L. Watson, and P. Dutta, "Where the sidewalk ends: privacy of opportunistic backhaul", 15th European Workshop on Systems Security (EuroSec22), Rennes France, April 2022

Today's learning objective

- After the lecture, you will be able to discuss the security and privacy challenges of IoT networks for "non-carpeted areas"
- Contributes to SSI learning goal #1: "Understand IoT concepts and applications, security threats, technical solutions, and a few relevant standardization efforts in the IETF"

"Security Vulnerabilities in LoRaWAN" 3rd ACM/IEEE International Conference on Internet-of-Things Design and Implementation (IoTDI), Orlando, Florida, USA, April 17-20, 2018

Get your phones ready!

Go to wooclap.com

Event code

Enter the event code in the top banner

Enable answers by SMS

What struck you about the paper?

LoraWAN: low-power, wide-area network, low bitrate

Deutsche Bahn is using LoraWAN, too

https://www.thethingsindustries.com/stories/deutsche-bahn/ https://www.youtube.com/watch?v=7zXNnb2qr6s

Long distance communications

公尺 = meter, record: 8km (832 km is the world record) Source: https://www.intelligentagri.com.tw/en

Coverage worldwide

Availability of LoRaWAN[®] Networks and Roaming Capability

Coverage in the Netherlands (KPN)

Bekijk de dekking van het LoRa-netwerk

Met onze LoRa coverage checker

KPN werkt hard aan de verdichting van het LoRa-netwerk zodat je overal in Nederland eenzelfde dekking ervaart als bij onze andere mobiele netwerken. De LoRa-dekking, zoals in de coverage checker weergegeven, is gebaseerd op een theoretisch model. De LoRa-dekking kan onderhevig zijn aan veranderingen.

LoraWAN: key components

LoraWAN sensor (e.g., temperature)

LoraWAN gateway

LoraWAN bridge (e.g., for ModBus)

Discussion: LoraWAN roles and keys

Key security functions

- Data plane (packet forwarding)
 - Encryption of LoraWAN payloads
 - Message integrity verification
 - Replay protection
- Management plane
 - Key derivation (symmetric)
 - Device enrollment protocol (OTA and "personalized")
 - Over the air firmware updates

Source: D. Kreutz, F. M. V. Ramos, P. Verissimo, HotSDN'13, August 16, 2013, Hong Kong, China.

LoraWAN key derivation

Discussion: denial of service through replay

_	time	counter	port	dev id	
	▲ 16:16:00	13	6	22	34 34 37 20 30 32 34 00
	▲ 16:15:25	12	61	22	34 39 36 20 30 32 34 00
	▲ 16:14:51	11	20	22	35 34 33 20 30 32 31 00
Injected message	▲ 16:08:49	10	49	22	34 38 30 20 30 32 31 00
U	▲ 16:08:34	0	71	22	31 39 32 20 30 32 32 00
	▲ 16:07:59	10	49	22	34 38 30 20 30 32 31 00
	▲ 16:06:16	7	41	22	35 32 37 20 30 32 33 00
	▲ 16:05:42	6	61	22	36 38 37 20 30 32 34 00
)	▲ 16:05:07	5	134	22	34 39 34 20 30 32 33 00
	▲ 16:03:59	3	83	22	34 34 38 20 30 32 32 00

Fig. 7. Log file of the victim's server.

Fig. 4. An example of a replay attack for ABP.

Discussion: known-plaintext attack

https://en.wikipedia.org/wiki/Known-plaintext_attack https://en.wikipedia.org/wiki/Block cipher

Discussion: proposed solution using 2 MICs

Discussion: ACK spoofing

Discussion: class B attacks (battery draining)

Let's look at the version history of LoraWAN

F. Hessel, L. Almon, and M. Hollick, 'LoRaWAN Security: An Evolvable Survey on Vulnerabilities, Attacks and their Systematic Mitigation', ACM Trans. Sens. Netw., vol. 18, no. 4, p. 70:1-70:55, Mar. 2023, doi: 10.1145/3561973.

Open standardization (vs. more closed like LoraWAN)

Key takeaways

- Designing network security protocols is challenging
- Attacks can have a physical component, such as jamming or device resets
- Highlights the importance of an open protocol development process (cf. IETF)

Coffee break

"Where the sidewalk ends: privacy of opportunistic backhaul" 15th European Workshop on Systems Security (EuroSec22), Rennes France, April 2022

Get your phones ready!

Go to wooclap.com

Enter the event code in the top banner

Event code

SMS	Enable	answers	bv	SMS
	LIIGNIC	411311613	~ 7	01.10

What struck you about the paper?

What are Opportunistic Networks and Backhaul?

De beste Bluetooth Tags

Opportunistic mesh networks

- Data mule: a vehicle providing data communication in remote areas
- Find My: crowd source device-tracking feature with BLE advertisements
- Exposure Notifications: Covid-19 notification based on BLE beacons

How is your experience and opinions on such applications?

Backhaul as a service

• Gateway-Centric Design using BLE, LoRA, or other low power wireless protocol

Amazon Sidewalk Architecture

• Amazon Sidewalk use BLE and LoRA. Sidewalk gateways can be Echo

https://docs.aws.amazon.com/iot-wireless/latest/developerguide/amazon-sidewalk-overview.html https://docs.sidewalk.amazon/introduction/sidewalk-how-works.htmlHZPRPBGX

Sidewalk collects routing metadata

"At a central network server for each payload"

- "Authenticates the gateway being used and records recently-used gateways for bidirectional communication"
- "Collects endpoint identifiers to authenticate devices"
- "Keeps gateways time-synchronized to generate correct payload timestamps"
- "Is given the desired server destination for the application data"
- "Device IDs are kept to enable bidirectional communication"

"Several encryption layers and rotating transmission identifiers protect Sidewalk communication, no guarantees can be made on how Amazon handles user metadata"

Amazon Sidewalk Privacy and Security Whitepaper https://www.amazon.com/gp/help/customer/display.html?nodeId=GRGWE27XHZPRPBGX Where the Sidewalk Ends: Privacy of Opportunistic Backhaul https://dl.acm.org/doi/abs/10.1145/3517208.3523757

Proof of Concept

Simulated pedestrian mobility Microsoft GeoLife mobility dataset Routing Metadata Devices and Gateways

Proof of Concept

Simulated pedestrian mobility Microsoft GeoLife mobility dataset Routing Metadata Devices and Gateways

Proof of Concept

Simulated pedestrian mobility Microsoft GeoLife mobility dataset Routing Metadata Device and Gateway identities Transmission time

Locations of Devices and Gateways

Microsoft GeoLife mobility dataset

What do you think about the dataset?

Can we do this at University of Twente?

What are Pros and Cons to collect such data?

Will you agree to participate in a similar experiment?

https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/

Location-based reconstruction

- All backhaul gateways are known
- A single mobile device
- Linear splines
- 800-2200 secs, gateways are sparse
- What else do you see? Problems? Methods?

Location-based reconstruction

- All backhaul gateways are known
- A single mobile device
- Linear splines
- 800-2200 secs, gateways are sparse
- What else do you see? Problems? Methods?

"An adversarial network provider can reconstruct the movement of endpoints through that area over time, but they can also derive an estimated position for the other gateways"

- A few gateways at known locations with high traffic flow
- Estimating pairwise distances
- Triangulating positions of other gateways

"An adversarial network provider can reconstruct the movement of endpoints through that area over time, but they can also derive an estimated position for the other gateways"

- A few gateways at known locations with high traffic flow
- Estimating pairwise distances
- Triangulating positions of other gateways

Estimating pairwise distances

- "Specifically, for each trace p_i , we calculate the list of time differences $(t_{k_1} t_{k_2})$ between connections made with gateways g_{j_1} , g_{j_2} for connection times t_{k_1} and t_{k_2} that occurred within two minutes of each other"
- "Since we want an accurate straight-line distance between gateways in order to conduct triangulation, we select the 5th percentile value of $(t_{k1} t_{k2})$ for each pair of gateways to use as the time distance estimate, avoiding noise"
- "We ignore any trace that does not see at least three unique gateways, as traces with only two or less gateways do not provide any meaningful information about relative distance between gateways"
- "Of the 1034 traces we started with, only 637 of them passed by at least three unique gateways, with the other 397 traces being too short or walking in too sparsely populated areas to interact with enough gateways."
- "Our data validates our assumption standard deviation of the velocities ON the standard point of the velocities of the standard deviation of the velocities of the

Estimating pairwise distances

- "For each trace p_i , we check every two minutes time $(t_{k1} t_{k2})$ "
- "We select the 5th percentile value of $(t_{k_1} t_{k_2})$ to avoid noise and get a straight-line distance"
- "We ignore any trace that does not see at least three unique gateways to get useful results"
- "The velocities of the endpoints we used tend to be around 1 m/s"

"Known gateway locations should be chosen intelligently. More mobility data allows for more accurate reconstructions."

"An adversarial network provider can reconstruct the movement of endpoints through that area over time, but they can also derive an estimated position for the other gateways"

- A few gateways at known locations with high traffic flow
- Estimating pairwise distances
- Triangulating positions of other gateways

Triangulating positions of other gateways

- "We do this through iterative least squares optimizations on *unknown* gateways until the positions stabilize."
- "To avoid local minima, we instantiate the predicted position values randomly, run 20 predictions with randomized initial positions, and select predictions that minimize the loss"

$$\min_{pos(g_{j_u})} \sum_{j \in \{0,...,75\}} (||pos(g_{j_u}) - pos(g_j)||_2 - D[j_u, j])^2$$

"An adversarial network provider can reconstruct the movement of endpoints through that area over time, but they can also derive an estimated position for the other gateways"

- A few gateways at known locations with high traffic flow
- Estimating pairwise distances
- Triangulating positions of other gateways
- Results

Discussion

- Metadata Privacy Tradeoffs of using private information retrieval (PIR)
- Accountability bidirectional communication
- Scalability database sharding and differential privacy

Discussion

• Metadata Privacy

Tradeoffs of using private information retrieval (PIR)

- "Data-packet source identifiers and timing data should be treated as sensitive information"
- Anonymous Communication Systems
- "Hiding timing metadata by batching uploads to a cloud system at a set frequency"
- Accountability
 bidirectional communication
- Scalability database sharding and differential privacy

Discussion

- Metadata Privacy Tradeoffs of using private information retrieval (PIR)
- Accountability bidirectional communication
 - "Read public PIR allows for authentication and tracks the volume of data."
 - "The network provider can charge users based on the amount of their data that is transmitted."
 - "One data transfer writing to many rows of the PIR database makes it vulnerable to DoS attack."
 - "To set up a bidirectional anonymous communications scheme to share location based deny lists."
- Scalability database sharding and differential privacy

Where the Sidewalk Ends: Privacy of Opportunistic Backhaul https://dl.acm.org/doi/abs/10.1145/3517208.3523757

Discussion

- Metadata Privacy Tradeoffs of using private information retrieval (PIR)
- Accountability bidirectional communication
- Scalability database sharding and differential privacy
 - "Stricter privacy guarantees resulting in higher computation, memory, and bandwidth cost."
 - "Adding noise locally at the gateway can avoid using cover traffic in exchange for a measurable privacy loss and additional latency."
 - "Uses of differential privacy must take into account a degrading privacy budget with repeated uploads from repetitive human behavior."

Where the Sidewalk Ends: Privacy of Opportunistic Backhaul https://dl.acm.org/doi/abs/10.1145/3517208.3523757

Key takeaways

- Security and privacy concerns of opportunistic networks
- Basics of devices and gateway localization by reconstruction with routing metadata
- Potential solutions to handle Metadata Privacy, Accountability, and Scalability.

Wrap-up

Guest lecture: Fri June 14, 10:45-12:30

Next regular lecture: Wed June 19, 10:45-12:30 Topic: IoT Device Security

Dr. Antonia Affinito | a.affinito@utwente.nl Prof. Cristian Hesselman | c.e.w.hesselman@utwente.nl

